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ABSTRACT

Obtaining high spatial or spatiotemporal resolution along with good slice cov-

erage is challenging in dynamic magnetic resonance imaging, MRI, due to the slow

nature of the acquisition process. In recent years, there has been a rapid growth of

MRI techniques that allow faster scan speed by exploiting spatial or spatiotemporal

redundancy of the images. These techniques can improve the performance of imaging

significantly across multiple clinical applications, including cardiac functional exam-

inations, perfusion imaging, blood flow assessment, contrast-enhanced angiography,

functional MRI, and interventional imaging, among others.

The ultimate goal of this thesis is to develop novel algorithms to reconstruct heav-

ily undersampled sparse imaging. The designed schemes aim to achieve a shorter scan

duration, higher spatial resolution, increased temporal resolution, signal-to-noise ra-

tio and coverage in multidimensional multichannel MRI. In addition to improving

patients comfort and compliance while imaging under the MRI device, the newly de-

veloped schemes will allow patients with arrhythmia problems, pediatric and obese

subjects to breath freely without the need for any breath-hold scans. Shortening

examination periods also reduces patient’s stress, lowers the entire visit to the clinic

and finally decreases the associated economic costs. Rapid imaging acquisitions will

also allow for efficient extraction of quantitative information needed for the patients’

diagnosis eg. tumor characterization and veins blockages through myocardial perfu-

sion MRI. Current applications of interests include real-time CINE MRI and contrast

changing perfusion MRI.
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PUBLIC ABSTRACT

Magnetic resonance imaging enables excellent visualization of both anatomical

structure and physiological function. Although it is used to diagnose numerous med-

ical conditions, current technology has several practical limitations, one of which is

slow imaging speed. Imaging speed in MRI is limited by physical and physiological

constraints associated with rapidly switching magnetically held gradients. Lack of

speed poses particular challenges for applications in dynamic cardiac MRI.

To reduce artifacts related to respiratory motion, most routine cardiac MRI tech-

niques acquire images during a patient’s breath-holds. The patient’s ability to sustain

breath-holds along with imaging speed determine the duration of the examination,

which in turn, determines the spatial and temporal resolution of the images. How-

ever, since many patients are unable to sustain breath-holds, the acquisition process

must be accelerated to reduce scan time.

In this thesis, we apply iterative algorithms of patch-smoothness regularization to

speed up medical imaging acquisitions. We employ our frameworks to solve problems

arising in various MRI applications. The utility of the proposed schemes is demon-

strated in the context of in-vivo static MR imaging, breath-held and free-breathing

cardiac CINE MRI with multichannel acquisitions as well as simulated phantoms, my-

ocardial perfusion MRI, gated and ungated acquisitions using both retrospective and

prospective experiments. The prospective datasets are challenging cases since they

are acquired in the ungated mode, accelerated by a high undersampling factor and

considerable cardiorespiratory motion is present due to the free-breathing scan. We

compare the algorithms against state-of-the-art finite difference, motion-compensated

and motion-resolved methods.
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spective colors. In the case of PRICE, subfigure (b), the metric penalizes the

differences between each patch and other patches in its cube-shaped neighbor-

hood in both spatiotemporal directions. The green squares indicate the location

of the patch in the current frame and the ones with the highest similarity in

the neighboring frames shown in the blue boxes. The dashed red box represents

the neighborhood where the patches move within. In iSTORM, the metric is

used to calculate the weights between the frames that have the same cardiac

and respiratory phases. PRICE and iSTORM alternate between inter-patch

differences estimation and image update step, which involves a computationally

efficient conjugate gradients algorithm. The NLS scheme is a simple version of

those schemes aimed to recover the static images analytically. . . . . . . . . . 10

2.1 Distances functions φ(t) that are relevant in non-local regularization (first
row) and the associated shrinkage rules t · ν(|t|) (second row); see Ap-
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2.2 Approximation of the potential function: (a) shows the original potential
function ϕ(t) in 1-D, which is the truncated `p; p = 0.5 penalty, T = 1.
(b) indicates the corresponding r(t) = t2/2− 1

β
ϕ(t) function with β =

2, shown in black. Note that this function is non-convex. Hence, we
approximate this function by r̂(t) shown in blue, which is the best convex
approximation of r(t). The corresponding modified potential function is
shown in blue in (c). (d) indicates the approximations for different values
of β. Note that the approximations converge uniformly to ϕ. (e) shows
the corresponding shrinkage rules. The potential functions and shrinkage
rules for different penalties are shown in Fig. 2.1. . . . . . . . . . . . . . 19
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2.3 Comparison of the convergence rate of the iterative reweighted (IRW) algorithm

and the proposed iterative non-local shrinkage (NLS) algorithm. The plots

indicate the evolution of the cost function in [equation (2.2)] as functions of

(a) the CPU time and (b) number of inner iterations in NLS and CG steps in

IRW. Both NLS and IRW algorithms converged in around 225 inner iterations.

However, the IRW scheme needed around 9 CG steps/inner iteration on average,

requiring a total of 2200 (see Algorithms IV.1 and IV.2). Since each inner

iteration in NLS is considerably faster than the corresponding one in [4], we

obtain a speedup of approximately ten fold. . . . . . . . . . . . . . . . . . . 29

2.4 Comparison of the algorithms in the absence of noise. We consider the recovery

of a 128×128 MR brain image from 5 fold undersampled Fourier samples, ac-

quired using a random sampling pattern shown in (e) using non-local shrinkage

scheme (NLS), DLMRI and local TV. The reconstructions are shown in (b)-(d).

The corresponding error images, scaled by a factor of 5 for better visualization,

are shown in the bottom row. The reconstructions show that the NLS scheme

is capable of better preserving the edges and details, resulting in less blurred re-

constructions. Note that this example was used as an illustration; the proposed

2-D under sampling pattern on the dataset acquired using a 3-D sequence is not

very realistic. We also used a high acceleration factor to demonstrate differences

between the methods; thus the resulting images may not be of diagnostic quality. 30

2.5 Comparison of the algorithms in the presence of noise. We consider the re-

covery of a 512×512 MR head complex image from three-fold undersampled

k-space data, acquired using a Cartesian sampling pattern contaminated by

zero mean complex Gaussian such that the SNR value after adding the noise is

25.0 dB. The top row shows the original and reconstructed images using non-

local shrinkage scheme (NLS), DLMRI and local TV. The reconstructions are

shown in (b)-(d). The corresponding error images as well as the sampling pat-

tern are shown in the bottom row. This is a challenging case due to the high

1-D undersampling factors and noise. We observe that the NLS scheme provides

better reconstructions with minimal aliasing artifacts. Note that this example

was used as an illustration; the proposed 2-D under sampling pattern on the

dataset acquired using a 3-D spin-echo sequence is not very realistic. Note

that we used a high acceleration factor to demonstrate differences between the

methods. The resulting images may not be of diagnostic quality. . . . . . . . 31

2.6 Comparison of three different MR images using NLS scheme in the presence of

noise. The Fourier samples are contaminated by zero mean complex Gaussian

noise such that the SNR of the data corresponding to the head, brain2 and calf

images are 32.3, 24.7 and 27.6 dB, respectively. The top row shows the recovery

from 2 fold acceleration using the Cartesian sampling pattern, while the middle

one shows the recovery from 100 radial spokes (≈3 fold acceleration). The

bottom row shows the recovery from 3 fold acceleration using random pattern.

We observe that the NLS scheme is capable of preserving the key image details. 33
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2.7 Comparison of MR brain images using NLS and TV algorithms from un-
dersampled multichannel multi-shot spiral data. The fully sampled data
was acquired using a multishot spiral sequence with 22 interleaves ac-
quired using 12 channels. All the interleaves were used to recover the fully
sampled datasets, while only 7 randomly chosen interleaves were used to
recover the undersampled datasets. The retained interleaves are shown
in the first column. We only used the data corresponding to four impor-
tant coils for the recovery. The two rows corresponds to two slices in the
acquisition. The recovery of the lower slice was considerably challenging
due to field inhomogeneity losses and subtle physiological motion between
interleaves; this explains the poor recovery of the datasets. The two rows
show the spiral trajectory, original and reconstructed images. Both the
proposed and TV regularized reconstructions are seen to have lower SNR,
mainly due to decreased number of measurements. However, we observe
that the proposed scheme provides sharper reconstructions. . . . . . . . . 36

3.1 (a) Illustration of the proposed PRICE scheme. The regularization term penal-

izes the differences between each patch and other patches in its cube shaped

neighborhood. The green squares indicate the location of the patch in the cur-

rent frame and the ones with the highest similarity in the neighboring frames.

The dashed red box represents the neighborhood where the patches move within.

The ability of the algorithm to exploit the similarity between corresponding

patches enables it to provide implicit motion compensated recovery unlike the

traditional ME-MC methods which explicitly do that. The distance metric used

for the comparison is shown by the dotted black curve in (b). The metric heav-

ily penalizes the distances between similar patches, while it saturates for large

inter-patch distances. This saturating behavior enables the algorithm to min-

imize spatiotemporal blurring, resulting from averaging of dissimilar patches.

The colored curves correspond to the different approximations of the distance

metric, which enables fast algorithms. (c) The shrinkage rule for the inter-patch

differences t·ν(|t|) using `p. We rely on continuation schemes as shown in (b) and

(c) starting with low values of β and gradually increase it to high values, when

the approximation is more accurate. (d) The algorithm alternates between a

simple shrinkage step to denoise inter-patch differences and image update step,

which involves a computationally efficient conjugate gradients algorithm. . . . 44
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3.2 Recovery of a retrospectively undersampled CINE dataset using PRICE (second row;

b1-b2), explicit motion-compensated algorithms (third and fourth rows), k-t SLR and

classical total variation regularization (fifth and sixth rows). The 256×224×16 dy-

namic dataset, which is acquired using ×5 coils, is retrospectively undersampled using

Cartesian sampling pattern. The cropped cardiac images of the fully sampled data

corresponding to peak diastole and systole cardiac phases are shown in (a1) and (a2).

These images are cropped versions of the full frame shown in (a3). The sampling pat-

tern for one frame is shown in (a4). The cropped reconstructed images are shown in the

first two columns, while their error images scaled by a factor of 7 for better visualization

are shown in the last two columns. The reconstructions using the PRICE algorithm is

quite comparable to the DC-CS scheme, which explicitly compensates for the motion;

the error images show that the errors associated with PRICE and DC-CS are more ho-

mogeneously distributed in the entire image, resulting in improved SER. By contrast,

the errors with other methods (e.g. TV and MASTeR) are more concentrated in the

edge regions, indicating edge blurring. The table shows a quantitative comparison of

the entire methods using SER, HFEN and SSIM metrics; all computed on the region

of interest as shown in (a3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Recovery of a prospectively undersampled Cartesian CINE dataset using PRICE,

DC-CS, k-t SLR and TV algorithms. The 128×128×20 sized dataset is acquired

using 12 coils and 16 Cartesian lines per phase. Two frames corresponding to

peak diastole and systole cardiac phases are shown for each scheme along with

their zoomed versions around the square box as shown in (b1). The sampling

pattern varies from frame to frame; the sampling masks corresponding to two

different frames are shown in (a2) and (a3). We observe that TV and k - t

SLR reconstructions exhibit temporal blurring while DC-CS had some motion

artifacts. PRICE is able to provide better reconstructions with less blurred

myocardial borders and papillary muscles. . . . . . . . . . . . . . . . . . . . 55

3.4 Evaluation of the ME-MC algorithms by retrospectively downsampling ungated & free-

breathing myocardial perfusion MRI data. The images (a1-a4) correspond to frames

in the time series with different cardiac/respiratory phases and different contrast due

to bolus passage. These images are cropped from a 288×108×80 dataset acquired

with 6 coils; one of these images are shown in (a5). We undersampled the Cartesian

sampled data along the phase encoding direction to obtain a three-fold acceleration.

One of the sampling masks are shown in (a6). The reconstructions and corresponding

residuals using PRICE (b1-b4) & (b5-b8), DC-CS (c1-c4)& (c5-c8), MASTeR (d1-

d4)& (d5-d8), k-t SLR (e1-e4)& (e5-e8) and TV (f1-f4)& (f5-f8) are shown. The error

images are scaled by a factor of three for better visualization. The extensive inter-

frame motion and contrast variations due to bolus passage makes this dataset very

challenging. We observe that the PRICE scheme provides reconstructions with lower

spatial and temporal blurring, compared to the other algorithms. The table above

shows a quantitative comparison of the entire methods using SER, HFEN and SSIM

metrics computed on the region of interest shown in (a5). . . . . . . . . . . . . . 56
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3.5 Evaluation of the ME-MC algorithms by radially downsampling 256×256×67

adenosine free-breathing stress myocardial perfusion MRI data acquired from a

normal subject. Three frames of the reference data acquired using 72 spokes/frame

are shown in (a1-a3). This data is undersampled by retaining a subset of 24

spokes; the sampling trajectory for one of the frames is shown in (a4). The

recovered images and their corresponding residual images using PRICE (b1-b3)

& (b4-b6), DC-CS (c1-c3) & (c4-c6), k-t SLR (d1-d3) & (d4-d6), and TV (e1-

e3) & (e4-e6) are shown. The three frames correspond to peak right ventricular

blood enhancement, a transition between the right ventricle and the left ven-

tricle and peak left ventricular blood enhancement respectively. It is seen from

the error images that the motion compensated methods (PRICE and DC-CS)

provide reduced edge blurring and better preservation of fine features, including

papillary muscles and around the myocardium wall as shown by the red arrows. 57

4.1 Illustration of the proposed i-SToRM scheme (b), in comparison with the SToRM

scheme in (a). The regularization term in SToRM involves the sum of weighted

`2 distances between images in the dataset, where the weights are estimated

from navigators. By contrast, the regularization scheme in i-SToRM is the

sum of unweighted robust distances between image sub-patches in the dataset.

Specifically, the patches of size N ×N indicated by the green neighborhood are

compared with each other using the distance metric, which saturates with large

distances. The center of the patches, specified by rk are chosen to span the en-

tire image with a specified stride; the patches are overlapping in space to reduce

blocky artifacts in the image and suppress noise. The main difference between

these formulations is the distance metric. We use an alternating minimization

to solve for the i-SToRM scheme, which alternates between the estimation of

the manifold Laplacian and the images; this approach eliminates the need for

the use of navigators and allows the extension of the SToRM scheme to exploit

the manifold structure of local patches. When the size of the patches is the

same as the size of the images, the first iteration of the i-SToRM scheme is

equivalent to the SToRM setting. . . . . . . . . . . . . . . . . . . . . . . . 60
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4.2 Comparison of SToRM, PSF, TV +Wavelet, i-SToRM without patches, and i-SToRM

with patches: We study the performance of these methods on a free-breathing ungated

cardiac CINE setting, acquired in the axial 4-chamber view. The dataset was acquired

using the navigated acquisition scheme used in [5], which consists of 4 navigator lines

and 6 golden angle spokes per frame. The sampling trajectory for one of the sampling

patterns is shown in sub-figure (a1) with colored lines indicating the navigators that

are the same for all frames. The time profiles in the fourth column are drawn for all

of the recovered frames, along with the line passing through the cardiac region shown

in (b1). The time instance of the specific frames are depicted in the time profiles with

the color of their bounding boxes. Three frames of each recon dataset are shown. The

images are zoomed versions around the square box shown in (a3) while (a2) is the initial

guess. Subfigures (b1-b3), (c1-c3) and (d1-d3) show the recovery using navigators-free

schemes, patch-based i-SToRM, i-SToRM with patches and TV + Wavelet respectively;

while (e1-e3) and (f1-f2) show the recovery using navigators-based schemes SToRM and

PSF. The top five rows are recovered using only a subset of 300 frames, while the bottom

row shows the data recovered from 1000 frames. SToRM and PSF schemes, shown in

the 5th - 7th rows, relied on navigators to estimate the global manifold Laplacian. The

comparisons of the reconstructions from 300 frames show that the i-SToRM scheme

can provide comparable image quality to the SToRM scheme, even though it did not

rely on the navigators. This iterative approach enabled us to exploit the local manifold

structure of the patches (i-SToRM with patches), which significantly improved the

performance over the global approach. The improved performance of SToRM and

iSToRM over PSF and TV +Wavelet methods, seen by a reduced blurring of image

features and improved temporal profiles, can be attributed to the improved signal

modeling offered by the non-linear manifold model compared to a subspace approach

or sparsity regularization. Note that the image quality of the i-SToRM with patches

obtained from 300 frames is comparable to that obtained from SToRM with 1000

frames. In the last column, we report the GPC indices for both the entire images, the

top value, as well as around a small region of interest containing the heart shown in

the bottom. The quantitative metric shows that the reconstruction of the proposed

method using 300 frames are comparable to that 1000 dataset recovered using SToRM. 74
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4.3 Evaluation of the proposed i-SToRM scheme with patches on free-breathing and un-

gated dataset with short axis views. The dataset was collected with two acquisition

schemes: a navigated acquisition scheme, as well as a golden angle sequence. The

sampling trajectories for navigated and golden-angle schemes for one of the frames are

shown in (a1) and (a2), respectively where the colored lines indicating the fixed nav-

igators that are the same for all frames. 300 frames of the time series (3000 spokes,

which correspond to 14 seconds of acquisition) were considered for recovery. Subfigures

(b1-b3) and (c1-c3) show the recovery using navigators-free i-SToRM without patches

and TV + Wavelet while (d1-d3) and (e1-e3) show the recovery using navigators-based

schemes SToRM and PSF respectively. The bottom two rows show the calibration-free

dataset recovered using the proposed i-SToRM method with patches (f1-f3) and TV

+ Wavelet (g1-g3). Note that there is no one-to-one correspondence between the two

acquisitions since they were acquired at two different time points, possibly with differ-

ent respiratory patterns. (a3) is the initial guess, while (a4) is the corresponding frame

recovered using patch-based i-SToRM. The zoomed versions of three frames, out of 300

frames, from different phases in the dataset are shown for the entire cases. The time

profiles in the fourth column are drawn for all of the frames, along the line passing

through the left ventricle and right ventricle as shown in (b1). While i-SToRM is com-

pared against SToRM and PSF using the calibration-based dataset, the calibrated-free

dataset is recovered using only the proposed scheme as well as TV + Wavelet since both

SToRM & PSF cannot estimate the manifold structure without navigators. The results

show the ability of the proposed i-SToRM scheme in recovering quality images compa-

rable to SToRM without relying on navigator signals. Both TV + Wavelet and PSF

exhibit considerable motion artifacts and temporal blurring. The last column shows

the GPC indices for both the entire images, the top value, as well as around a small

region of interest containing the myocardium shown in the bottom. The quantitative

metric shows an improvement of the proposed method compared to other reconstructions. 75
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4.4 Recovery of the simulated CINE dataset using i-SToRM with patches (b1-b3), both

calibration-based schemes SToRM (c1-c3) and PSF (d1-d3), and classical total variation

with wavelet regularization (e1-e3). The simulated dynamic dataset is retrospectively

undersampled using radial sampling pattern with 12 spokes, 4 navigator lines and 8

golden angle spokes per frame. One of the sampling masks is shown in (a6) with colored

lines indicating the navigators. Three frames of each recon of the data corresponding

to peak diastolic and systolic cardiac phases and one in transition phase are shown for

each scheme. The images are cropped versions of the full frame shown in (a5) while

(a4) is the initial guess. The reconstructed images are shown in the first three columns

along with their error images scaled by a factor of 5 for better visualization. The time

profiles in the last column are drawn for the entire recovered frames, along with the line

passing through the left ventricle and right ventricle shown in (a5). We observe that

i-SToRM provides reconstructions with lower spatial and temporal blurring, compared

to other algorithms. While SToRM recon is quite comparable to the proposed scheme,

PSF and TV + Wavelet reconstructions exhibit motion artifacts and temporal blurring

respectively. The residual images show that the errors associated with i-SToRM and

SToRM are more homogeneously distributed in the entire image, thus provide reduced

edge blurring and better preservation of fine features, including papillary muscles. By

contrast, the errors with TV + Wavelet and PSF are more concentrated in the edge

regions and around the myocardial wall, indicating edge blurring. The tables at the

bottom of the figure show a quantitative comparison of the entire methods using SER,

HFEN, SSIM and GPC metrics computed for the entire times series on both global

images as well as a square region of interest containing the heart as shown in (f1). . . 76
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CHAPTER 1
INTRODUCTION

1.1 BACKGROUND

Magnetic resonance imaging (MRI) is a noninvasive, nonionizing and highly accu-

rate imaging modality. It enables excellent visualization of both anatomical structure

and physiological function. Although MRI is used to diagnose numerous medical

conditions, current technology has several practical limitations, one of which is slow

imaging speed. Imaging speed in MRI is limited by physical and physiological con-

straints associated with rapidly switching magnetically held gradients. Lack of speed

poses particular challenges for applications in dynamic cardiac MRI.

To reduce artifacts related to respiratory motion, most routine cardiac MRI tech-

niques acquire images during a patient’s breath-holds. In fact, a complete acquisition

takes a few cardiac cycles and may require multiple breath-holds by the patient. Thus,

the patient’s ability to sustain breath-holds along with imaging speed determine the

duration of the examination, which in turn, determines the spatial and temporal reso-

lution of the images. However, since many patients are unable to sustain breath-holds,

the acquisition process must be accelerated to reduce scan time.

With the introduction of reduced-data imaging methods, reduction in the scan

time does not require an increase in imaging speed (via enhanced gradient perfor-

mance), but instead, a reduction in the number of phase-encoding lines that results

in an undersampled k-space. A fundamental challenge in reduced-data imaging is

to recover high-resolution images from undersampled k-space data, a problem that

is often underdetermined. One common approach to solving such an underdeter-

mined problem is to utilize the spatial and temporal structures in the images and the

redundancies in the acquisition setup.
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1.2 COMPRESSED SENSING

Accelerated MRI techniques reduce signal acquisition time by undersampling k-

space. A fundamental problem in accelerated MRI is the recovery of quality images

from undersampled k-space data. Compressed sensing has recently gained a lot of at-

tention in many applications because it enables acquiring sparse signals from a much

smaller number of samples than the ambient dimension of the signal and ensures re-

covery of (structured) sparse signals from undersampled, incoherent measurements.

Compressed sensing takes advantage of the fact that most signals of interest in prac-

tice are sparse: there are only a few non-zero or big elements when the signals are

represented over a certain dictionary such as wavelet basis. For these types of sparse

or compressible signals, compressed sensing theory has established that a small num-

ber of non-adaptive measurements are often sufficient to efficiently recover them under

methods such as `1 minimization.

1.3 THESIS CONTRIBUTION

Recent CS methods have employed analytically sparsifying transforms such as

wavelets, curvelets, and finite differences. The reconstruction by those methods is

usually seen to have many undesirable artifacts and loss of features. Recent studies

have shown the promise of patch-based schemes in a variety of applications such as

image/video denoising, image/video inpainting, deblurring, and demosaicing. [6–8].

The shift from global image sparsity to patch-based sparsity is appealing since patches

create an additional averaging effect which helps capture image features effectively,

and can potentially remove noise and motion artifacts in the dynamic images without

sacrificing resolution.

In this thesis, we apply iterative algorithms of patch-smoothness regularization in

medical imaging applications. These approaches are enabled by the reformulation of

current non-local regularization schemes as an alternating algorithm to minimize a

global criterion. We employ the ideas presented in the next sections to solve problems
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arising in various MRI applications. The utility of the proposed schemes is demon-

strated in the context of in-vivo static MR imaging, breath-held and free-breathing

cardiac CINE MRI with multichannel acquisitions as well as simulated phantoms, my-

ocardial perfusion MRI, gated and ungated acquisitions using both retrospective and

prospective experiments. We compare the algorithms against classical compressed

sensing schemes that exploit spatial or spatiotemporal finite difference sparsity, a

combination of sparse and low-rank as well as state-of-the-art motion-compensated

and motion-resolved methods. The prospective datasets are challenging cases since

they are acquired in the ungated mode, accelerated by a high undersampling factor

and considerable cardiorespiratory motion is present due to the free-breathing scan.

1.3.1 2-D IMAGE RECONSTRUCTION

Recent studies have shown the promise of patch-based schemes in a variety of

applications such as image denoising, inpainting, and demosaicing. [6–8]. Non-local

means (NLM) denoising algorithms recover each pixel as a weighted linear combi-

nation of all pixels in the noisy image; the inter-pixel weights were estimated as

the similarity between patch neighborhoods [9–11]. This algorithm was extended to

deblurring problems [12–14] by posing the recovery as an optimization scheme. How-

ever, this algorithm is not readily applicable to MRI recovery from undersampled

data since the weights estimated from aliased images preserve alias patterns. Some

authors have iterated between denoising and weight estimation steps [15]. However,

this scheme had limited success in heavily undersampled Fourier inversion problems.

This alternating NLM scheme has been recently shown to be a majorize-minimize al-

gorithm to solve for a penalized optimization problem, where the penalty term is the

sum of unweighted robust distances between image patches [4, 16, 17]. While convex

distance metrics such as `1 distances may be used, nonconvex metrics that correspond

to the classical NLM choices are seen to provide significantly improved image qual-

ity [4]. The availability of the global cost function enabled homotopy continuation
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strategies to encourage the convergence to global minima, when non-convex metrics

are used [4]. The main challenge associated with the implementation in [4] is the high

computational complexity of the alternating minimization algorithm.

In this thesis, we introduce an iterative Non-Local Shrinkage (NLS) algorithm,

which alternates between (a) evaluating the denoised inter-patch differences by shrink-

age, and (b) computing an image that is consistent (in least-square sense) with the

denoised inter-patch differences and measured data. This approach is based on ad-

ditive half quadratic majorization of the patch based penalty term [18–21]. Unlike

the majorization used in our previous work [4], the weights of the quadratic terms

are identical for all patch pairs, but now involve new auxiliary variables that may

be interpreted as the denoised inter-patch differences. We derive analytical shrinkage

expressions for approximate versions of a range of distance functions that are relevant

for non-local regularization; this generalizes the shrinkage formulae derived by Char-

trand in the context of `p penalties [3]. The proposed approximations are the same as

the Huber-like corner-rounded penalties [22–25]. The direct evaluation of the patch

shrinkages are computationally expensive. We propose to exploit the redundancies

in the shrinkages at adjacent pixels using separable convolution operations, thereby

considerably reducing computational complexity. We validate the proposed scheme

in the context of recovering MR images from undersampled measurements. This is

an active research area with several applications [26–28].

1.3.2 MOTION-COMPENSATED DYNAMIC IMAGE RECONSTRUCTION

Dynamic magnetic resonance imaging (DMRI) involves imaging physiological pro-

cesses that are evolving in time. Accelerated imaging involving sparse k - t sam-

pling and constrained reconstruction has demonstrated great potential to improve

DMRI [29–36]. Several regularization schemes including sparsity-based penalties

[31, 33, 37–40], low-rank penalties [41–48] and combination of sparse and low-rank

constraints [44,48,49] were introduced to accelerate imaging. These methods provide
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superior reconstructions when the inter-frame motion (e.g in breath-held and gated

acquisitions) is relatively low. However, the parsimonious assumptions made by these

schemes often break down in the presence of large inter-frame motion, which restricts

the performance of these methods in free-breathing and/or ungated applications.

To address the above challenge, several motion estimation and compensation (ME-

MC) schemes have been developed; these methods alternate between explicit estima-

tion of inter-frame motion, followed by motion-compensated reconstruction [50–54].

For example, the k-t FOCUSS scheme with ME-MC [50], which was introduced for

cardiac cine MRI, alternates between motion estimation using block matching and

sparsity based regularization of the residuals. Similarly, regional low-rank constraint,

coupled with deformation estimation, was introduced in [51] to account for contrast

variations in myocardial perfusion MRI. A generalized deformation compensated com-

pressed sensing (DC-CS) scheme capable to include a variety of penalties (e.g. sparse,

low-rank) has also been proposed [55, 56]. Other ME-MC schemes include motion-

adaptive spatiotemporal regularization (MASTER) [57] differ in the type of the mo-

tion model as well as the exact regularization penalties. The main challenge with

all of these schemes is the complex motion estimation step, often involving a compu-

tationally expensive deformable image registration, block matching, or optical flow

algorithms [57–59]. In addition, the lack of a unifying cost function restricts the anal-

ysis of the convergence of the joint algorithm to undesirable fixed points. The above

mentioned challenges limit the utility of these scheme in applications.

In this thesis, we propose a computationally efficient, patch smoothness regu-

larization framework to overcome the above-mentioned drawbacks. The proposed

scheme exploits the similarity of rectangular image sub-patches in a frame with other

patches in its spatiotemporal neighborhood (see Fig 3.1). The regularization penalty,

which involves the sum of robust inter-patch distances between patches in each others’

neighborhood, is similar to standard penalties in compressed sensing. The inter-patch
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distance metric is chosen to heavily penalize small differences, while the metric satu-

rates for large differences [60]. By comparing the neighboring patches in both spatial

and temporal directions, the proposed framework implicitly compensates for the local

motion of the pixels across time, therefore avoiding unnecessary explicit image regis-

tration or computation of the motion vectors (see Fig 3.1). We use the majorization

of the regularization penalty to simplify the optimization scheme as an alternating

minimization strategy; the algorithm alternates between an analytical inter-patch

shrinkage step, and a quadratic update step that is efficiently solved by a conjugate

gradient (CG) algorithm. The presence of a common cost function for these two steps

enables us to derive efficient continuation strategies that encourage the convergence

to the global minimum.

The PRICE scheme also has conceptual similarities to patch-based methods that

rely on dictionary learning used in several applications including dynamic MRI [61,62].

In contrast to these schemes, we considerably reduce the search space by focusing on a

smaller search neighborhood; this results in an algorithm whose computational com-

plexity is comparable to classical total variation regularization. The PRICE scheme

also has similarities to [63] that uses a combination of 2-D spatial and 1-D temporal

non-local penalties. However, [63] does not compare a patch to shifted patches in the

neighboring frames.

1.3.3 MOTION-RESOLVED DYNAMIC IMAGE RECONSTRUCTION

Clinical dynamic imaging schemes often collect k-t space data in a breath-held

segmented mode. These approaches make it challenging to acquire data from several

patient groups (e.g. claustrophobic, pediatric subjects and obese patients), who have

difficulty in holding their breath. In addition, the achievable spatial resolution is

often severely limited by the typical breath-hold durations. Another challenge is the

long duration of the exam, which makes cardiac MRI expensive and reduces patient

comfort.
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Respiratory gating methods were introduced to eliminate the need for breath-

holding. These methods rely on respiratory bellows, self-gating, or navigator sig-

nals [64, 65] to select the k-space data from a specific respiratory phase. The main

challenge associated with these methods is low acquisition efficiency. While low-rank

methods [43, 44, 49, 66] provide good reconstructions in breath-held mode, the direct

application of these methods to the setting with extensive cardiac and respiratory

motion is challenging. Motion compensated reconstruction schemes were introduced

to improve acquisition efficiency [54, 55, 57–59]. These approaches rely on joint com-

pressed sensing and motion compensation to recover the images from multiple phases

simultaneously while estimating the motion between phases using deformable reg-

istration. The main downside of these schemes is the considerable computational

complexity needed to recover the data from multiple cardiac and respiratory phases.

Recently, several researchers have proposed motion resolved recovery schemes,

which estimate the cardiac and respiratory phases from golden angle radial acquisi-

tions. These methods estimate the phase information by filtering the series of central

k-space samples acquired at each shot [48, 67]. The binned four-dimensional data

(two spatial dimensions, a respiratory dimension, and a cardiac phase dimension) is

then recovered using spatiotemporal total variation regularization. While the good

performance of these methods has been demonstrated in several subjects, their util-

ity in subjects with irregular respiration and cardiac motion (e.g arrhythmia) is not

clear. The use of navigators at every alternate acquisition considerably simplifies the

estimation of the phases as shown in [48, 49]. However, this approach comes at the

expense of 50% overhead in acquiring the navigator signal.

In this thesis, we build upon our recent SToRM framework [5] and related manifold

based approaches [68], which rely on an implicit binning strategy using navigators.

SToRM assumes the images in a free-breathing and ungated dataset to be points

on a smooth and low-dimensional manifold. The Laplacian matrix that specifies the
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structure of the manifold, or equivalently the similarity between image pairs in the

dataset, is estimated from navigator signals. The main advantage of this implicit

motion-resolved scheme over explicit binning strategies is the recovery of the natural

dynamics in a real-time acquisition mode. While this approach offers good recon-

structions, SToRM’s dependency on radial navigators lowers the scanning acquisition

efficiency. Specifically, 2-4 radial lines per frame are usually needed for good recovery

and approximately 20-40% of the scan time is devoted to the acquisition of those nav-

igators. This approach also results in reduced incoherence between sampling patterns

of different frames, and makes it difficult for the future extension of this scheme to

3-D applications. Another challenge is that SToRM requires a relatively long acqui-

sition duration (≈ 1 minute per slice) to ensure that the complex image manifold is

well-sampled. Specifically, since SToRM relies on the similarity between images in

the dataset, a large number of images are needed to ensure that all the phases are

well represented.

The focus of this work is to overcome the drawbacks associated with SToRM while

maintaining the good quality of the recon, by exploiting the manifold structure of

localized image patches in the dataset. Separately exploiting the manifold structure of

these localized regions is far more effective; since the manifolds are relatively simpler,

fewer images (and hence shorter acquisitions) are sufficient to ensure good sampling.

In addition to eliminating the dependence on navigators, this approach facilitates the

extension of the global SToRM framework to exploit the local manifold structure of

image patches.

1.4 ORGANIZATION

Chapter 2, introduces a fast iterative shrinkage algorithm for patch-smoothness

regularization in 2-D applications. In Chapter 3, an efficient PRICE scheme, which

implicitly compensates for inter-frame motion, is introduced to recover dynamic MRI

data from highly undersampled measurements. In Chapter 4, we develop a motion-
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resolved manifold regularization scheme for accelerating free breathing ungated dy-

namic MR imaging. Finally, we summarize our work and possible future extensions

in chapter 5.

Figure 1.1 illustrates the proposed PRICE and iSTORM schemes covering 2.8.0.4

and 3.5, while the scheme mentioned in 2 is a simpler version of those schemes intro-

duced to recover the static 2D images. In the case of PRICE, the metric penalizes the

differences between each patch and other patches in its cube-shaped neighborhood

in both spatiotemporal directions. In iSTORM, the metric is used to calculate the

weights between the frames that have the same cardiac and respiratory phases. The

formulation of motion compensation or resolution recovery in a unified cost function

enables us to come up with effective optimization algorithms that are more compu-

tationally efficient than current state-of-the-art methods. The patch regularization

metric can either compensate for the motion or can pick the respiratory phases that

match each other, which may not be that close on the real sequence. The redun-

dancies between adjacent frames in the presence of motion can be exploited using

patch smoothness regularization; while the redundancies between frames in the same

cardiac and respiratory phases can be exploited using image manifold smoothness reg-

ularization, thus the developed schemes provide either implicit motion-compensated

or implicit motion-resolved recovery. These implicit strategies with well-defined en-

ergy minimization formulations are more effective and computationally efficient than

explicit motion compensation and other gating methods. PRICE and iSTORM alter-

nate between inter-patch differences estimation and image update step, which involves

a computationally efficient conjugate gradients algorithm.
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CHAPTER 2
FAST NOVEL PATCH-BASED ITERATIVE SHRINKAGE SCHEME

2.1 ABSTRACT

In this chapter, we introduce a fast iterative shrinkage algorithm for patch-smoothness

regularization of inverse problems in medical imaging. This approach is enabled by

the reformulation of current non-local regularization schemes as an alternating al-

gorithm to minimize a global criterion. The proposed algorithm alternates between

evaluating the denoised inter-patch differences by shrinkage and computing an image

that is consistent with the denoised inter-patch differences and measured data. We

derive analytical shrinkage rules for several penalties that are relevant in non-local

regularization. The redundancy in patch comparisons used to evaluate the shrinkage

steps are exploited using convolution operations. The resulting algorithm is observed

to be considerably faster than current alternating non-local algorithms. The pro-

posed scheme is applicable to a large class of inverse problems including deblurring,

denoising, and Fourier inversion. The comparisons of the proposed scheme with state

of-the-art regularization schemes in the context of recovering images from undersam-

pled Fourier measurements demonstrate a considerable reduction in alias artifacts

and preservation of edges.

2.2 METHOD

2.2.1 Problem Formulation

We consider the recovery of a complex image f : Ω→ C from its measurements b.

Here, Ω ⊂ Z2 is the spatial support of the complex image. We model the acquisition

scheme by the linear degradation operator A:

b = Af + n. (2.1)
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For example, A ∈ CM×N corresponds to a convolution in the deconvolution setting,

a Fourier matrix in the case of Fourier inversion, or identity matrix in the case of

denoising. Here, f ∈ CN is a vector obtained by the concatenating the rows in a 2-D

image f(x) and b ∈ CM is the vector of measurements. We assume n to be Gaussian

distributed white noise process of a specified standard deviation σ.

2.2.2 Unified Non-Local Regularization

The iterative algorithm that alternates between classical non-local image recovery

[69] and the re-estimation of weights was shown in [4] to be a majorize-minimize

(MM) algorithm:

f̂ = arg min
f
‖Af − b‖2 + λ G(f)︸ ︷︷ ︸

C(f)

, (2.2)

where ‖Af − b‖2 is the data fidelity term, and the regularization functional G(f) is

specified by:

G(f) =
∑

x

∑

y∈x+N

ϕ (Px(f)− Py(f)) . (2.3)

Here ϕ is an appropriately chosen potential function and Px(f) is a patch extraction

operator which extracts an image patch centered at the spatial location x from the

image f ; i.e. Px(f) can be written as f(x + p), where p ∈ B denotes the indices

in the patch. For example, if we choose a square patch of size (2N + 1), the set

B = [−N, ..., N ]×[−N, ..., N ]. Similarly,N are the indices of the search neighborhood;

the patch Px(f) is compared to all the patches whose centers are specified by x +N .

For example, if we choose a square shaped neighborhood of size 2M + 1, the set N =

[−M, ...,M ] × [−M, ...,M ]. The shape of the patches and the search neighborhood

may be easily changed by re-defining the sets N and B. In this research, we focus on

potential functions of the form:

ϕ(g) = φ (‖g‖) , (2.4)
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where φ : R+ → R+ is an appropriately chosen distance metric and ‖g‖2 =
∑

p∈B |g(p)|2.

2.2.3 Solution Using an Iterative Reweighted Algorithm

It is showed in [4] that equation (2.2) can be solved using a majorize-minimize

algorithm, where the regularization term is majorized by the weighted sum of patch

differences:

G(f) ≤
∑

x

∑

p∈N

wn(x,x + p)‖Px(f)− Px+p(f)‖2

︸ ︷︷ ︸
Gn(f)

. (2.5)

The above relation is essentially the classical multiplicative half-quadratic majoriza-

tion [19, 20, 70] of the penalty in equation (2.2). The weights wn(x,x + p) in equa-

tion (2.5) are specified by:

wn(x,y) =
φ′(‖Px(fn)− Py(fn)‖)
2‖Px(fn)− Py(fn)‖ . (2.6)

Here, fn is an image vector at the nth iteration. Each iteration of the MM algorithm

involves the minimization of the criterion:

fn+1 = arg min
f
‖Af − b‖2 + λGn(f). (2.7)

Note from equation (2.5) that Gn is a weighted linear combination of patch differences,

where the weights wn(x,x + p) are spatially varying. This makes it difficult to develop

a closed form expression to solve equation (2.7). As discussed above, one of the main

challenges of the algorithm is its high computational complexity. Specifically, the

conjugate gradients algorithm to solve equation (2.7) converges slowly, especially as

the weights increase.
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2.3 PROPOSED ALGORITHM

2.3.1 Majorization of the Penalty Term

In this research, we will consider the additive half-quadratic majorization [18,21,

70] of the potential function ϕ, specified by:

ϕ(t) , min
s

{
ψ(s) +

β

2
‖s− t‖2

}
(2.8)

This additive half-quadratic majorization scheme was originally introduced for edge

preserving gradient regularization; using this scheme has not been reported in patch

regularization before. With additional simplifications below, using this scheme results

in a fast algorithm. The function ψ in equation (2.8) depends on ϕ and β, while s is

an auxiliary variable. Since ϕ is the minimum of ψ(s) + β
2
‖s− t‖2, we will also solve

for s along with t. Note that unlike equation (2.5), the quadratic term on the right

hand side of equation (2.8) is weighted by the scalar β/2, which is the same for all

spatial locations. The spatial invariance of the weights enables us to analytically solve

a key subproblem, which is not possible with equation (2.5). Using equation (2.8),

we express the original problem in equation (2.2) as:

f̂ = arg min
f

min
{sx,q}

‖Af−b‖2+λ
∑

x

∑

q∈N

ψ(sx,q)+λ
β

2

∑

x

∑

q∈N

‖Px(f)−Px+q(f)−sx,q‖2.

(2.9)

Note that the solution involves the minimization with respect to both f and the

variables {sx,q}. We use an alternating minimization algorithm, where we alternate

between two steps. In the first step, we minimize equation (2.9) with respect to

{sx,q}, assuming f to be fixed. In the second step, we solve for f , assuming {sx,q}

to be fixed, these steps can be solved analytically. The efficient implementation of

these subproblems is the main reason why the proposed algorithm is faster than the

iterative reweighted implementation. Similar speed-ups were reported with using the
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half-quadratic regularization scheme in the context of other regularization penalties

[18,21,70].

2.3.2 The s Sub-Problem: solve for sx,q, assuming f fixed

We focus on minimizing equation (2.9) with respect to the auxiliary variables

{sx,q}, assuming f to be a constant in this subsection. In this case, determining each

of the auxiliary variables sx,q corresponding to different values of x and q can be

treated independently:

s̄x,q = arg min
sx,q

β

2
‖Px(f)− Px+q(f)− sx,q‖2 + ψ(sx,q).

We showed in [2] that with a convex hull approximation of the function β|t|2/2−

ϕ(t), we can analytically determine sx,q as a shrinkage for all penalties of interest:

s̄x,q = [Px(f)− Px+q(f)] ν (‖Px(f)− Px+q(f)‖) , (2.10)

where ν : R+ → R+ is a function that depends on the distance metric φ. We

determined the shrinkage rules corresponding to the useful penalties in details in [2] .

2.3.3 The f Sub-Problem: solve for f , assuming sx,q fixed

In this subsection, we focus on minimizing equation (2.9) with respect to f , assum-

ing the auxiliary variables {sx,q} to be fixed. We show that this quadratic sub-problem

can be solved analytically in the Fourier domain for several measurement operators.

Minimizing equation (2.9) with respect to f , assuming {sx,q} fixed, simplifies to:

f̂ = arg min
f
‖Af − b‖2 +

λβ

2

∑

x;q∈N
‖Px(f)− Px+q(f)− sx,q‖2

︸ ︷︷ ︸
R(f)

(2.11)

The above quadratic penalty may be solved using the conjugate gradients algorithm.

However, we will now simplify it to an expression that can be solved analytically,



www.manaraa.com

16

−1 0 1
0

1

2

t

(a) `p

−1 0 1
0

1

2

t

(b) `p-T

−1 0 1
0

1

t

(c) H1

−1 0 1
0

1

t

(d) Peyre

−1 0 1
0

1

t

(e) NLTV

−1 0 1

−1

0

1

t

−1 0 1

−1

0

1

t

−1 0 1

−1

0

1

t

−1 0 1

−1

0

1

t

−1 0 1

−1

0

1

t

Figure 2.1: Distances functions φ(t) that are relevant in non-local regularization
(first row) and the associated shrinkage rules t · ν(|t|) (second row); see Appendix B
in [2] for the corresponding formulas that relies on a convex hull approximation of
the original penalty. Here we illustrate the shrinkage rules in 1-D for the parameter
choices β = 2, p = 0.5, T = 1, and σ = 0.5. The approach introduced in the research
enables evaluating the shrinkage rules for a much larger class of penalties, generalizing
the results in [3] for `p penalties shown in the first column.

which is considerably more efficient. The quadratic penalty term involves differences

between multiple patches in the image, each of which is a linear combination of

quadratic differences between image pixels. The differences between two specific

pixels are thus involved in different patch differences. We show in Appendix A that

the pixel differences from several patches can be combined to obtain the following

pixel-based penalty:

f̂ = arg min
f
‖Af − b‖2 + λ

β

2

∑

q∈N

‖Dqf − hq‖2. (2.12)

Here, Dq is the finite difference operator

(Dqf)(x) = f(x)− f(x + q). (2.13)
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The images hq(x),q ∈ N , are obtained from the patch shrinkages as:

hq = (Dqf) • vq. (2.14)

Here, • denotes the entrywise multiplication of the vectors, and vq is obtained by

summing the shrinkage weights of nearby patch pairs:

vq(x) =
∑

p∈B

ν (‖Px+p(f)− Px+p+q(f)‖)︸ ︷︷ ︸
uq(x)

. (2.15)

We solve equation (2.12) in the Fourier domain for measurement operators A that

are diagonalizable in the Fourier domain.

2.3.4 Determination of Shrinkage Rules

The existence of an analytical solution to (2.7) is key to the fast implementa-

tion of the alternating minimization scheme. In this section, we determine analytical

shrinkage rules for a larger class of potential functions. The main idea is to use prop-

erties of convex conjugate functions to derive the dual function ψ(s) in (2.8), which is

required for the solution of (2.7). However, this approach requires certain convexity

requirements which are not met by many potential functions of practical interest.

Therefore, we propose a procedure for approximating potential functions that yields

an analytical shrinkage rule. This quality of this approximation is controlled by a

parameter β, becoming exact as β →∞.

We rewrite (2.8) as:

ϕ(t) = min
s

{
ψ(s) +

β

2

(
‖s‖2 − 2< (〈s, t〉) + ‖t‖2

)}
,
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where <(x) is the real part of x . The above equation is further rearranged as:

‖t‖2
2
− 1

β
ϕ(t)

︸ ︷︷ ︸
r(t)

= max
s




< (〈s, t〉)−

(
1

β
ψ(s) +

‖s‖2
2

)

︸ ︷︷ ︸
g(s)





(2.16)

From the theory in [71], the above relation is satisfied when r(t) is a convex function,

in which case g = r∗, the Legendre-Fenchel dual (or convex conjugate) of r:

r∗(s) = max
t
{< (〈s, t〉)− r(t)} . (2.17)

However, the function r is not convex for most penalties ϕ that we are interested in,

especially for small values of β. When r is not convex, we propose to approximate r

by a convex function r̂ so that relation equation (3.9) is satisfied. We choose r̂ such

that the epigraph of r̂ is the convex hull of the epigraph of r; r̂ is thus the closest

convex function to r (see Fig. 2.2.b). For ϕ functions of the form (2.4), we have

r(t) = q(‖t‖), where the function q : R+ → R+ is specified by q(t) = t2/2 − φ(t)/β.

In all the cases we consider in this paper (see Appendix B), we can obtain the convex

hull approximation of r as

r̂(t) =





q(‖t‖) if q′(‖t‖) > 0

c else
, (2.18)

where c is an appropriately chosen constant to ensure continuity of r̂; see Fig. (2.2 b)

for an example. The convex hull approximation of r(t) is equivalent to approximating

the original penalty ϕ(t) as:

ϕ̂(t) := β

(‖t‖2
2
− r̂(t)

)
;

see Fig. (2.2c). For the potentials considered in this paper, this “Huber-like” approx-
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imation:

ϕ̂(t) =





β‖t‖2
2
− c if ‖t‖ < L

φ(‖t‖) else

, (2.19)

amounts to approximating the cusp of the original potential function at the origin by

a quadratic function. Note that L = L(β) → 0 as β → ∞, when the approximation

of ϕ by ϕ̂ is exact. In particular we have ϕ̂ → ϕ uniformly as β → ∞; see Fig. (2.2

d). This approximation enables us to derive the analytical solution for (2.7), which is

termed as a shrinkage rule. The shrinkage rule in (2.7) involves computing s̄ specified

0
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Figure 2.2: Approximation of the potential function: (a) shows the original poten-
tial function ϕ(t) in 1-D, which is the truncated `p; p = 0.5 penalty, T = 1. (b)
indicates the corresponding r(t) = t2/2− 1

β
ϕ(t) function with β = 2, shown in black.

Note that this function is non-convex. Hence, we approximate this function by r̂(t)
shown in blue, which is the best convex approximation of r(t). The corresponding
modified potential function is shown in blue in (c). (d) indicates the approximations
for different values of β. Note that the approximations converge uniformly to ϕ. (e)
shows the corresponding shrinkage rules. The potential functions and shrinkage rules
for different penalties are shown in Fig. 2.1.
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by:

s̄(t) = arg min
s

{
ψ(s) +

β

2
‖s− t‖2

}

which is often called the proximal mapping of ψ. The above equation can be simplified

as

s̄(t) = arg min
s

{
β

(
1

β
ψ(s) +

‖s‖2
2

+
‖t‖2

2
− 〈s, t〉

)}

= arg max
s




〈s, t〉 −

(‖s‖2
2

+
1

β
ψ(s)

)

︸ ︷︷ ︸
r̂∗(s)





(2.20)

Differentiating the right hand side of equation (2.20) with respect to s and setting it

to zero, we obtain t− ∂r̂∗(s̄) 3 0, or equivalently,

s̄(t) ∈ (∂r̂∗)−1(t).

Since the subgradients of Legendre-Fenchel duals satisfy (∂r̂∗)−1(t) = (∂r̂)(t), we

have

s̄(t) ∈ ∂r̂(t). (2.21)

Considering the expression for the convex hull approximation of r̂ in equation (2.18),

we have:

s̄(t) =





q′(‖t‖) t
‖t‖ if q′(‖t‖) > 0

0 else.
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Setting q(t) = t2/2− φ(t)/β in the above equation, we obtain the shrinkage rule as:

s̄(t) =
t

‖t‖

(
‖t‖ − 1

β
φ′(‖t‖)

)

+

= t

(
1− φ′(‖t‖)

β ‖t‖

)

+︸ ︷︷ ︸
ν(‖t‖)

, (2.22)

where (·)+ := max{·, 0}. Here, ν(‖t‖) is a scalar between 0 and 1, which when

multiplied by t will yield the shrinkage of t. Setting t = Px(f)−Px+q(f) in the above

equation, we obtain the shrinkage rules to be used in (3.10). Note that the above

approach can be adapted to most penalties. We determine the shrinkage rules and

the associated ν functions for common penalty functions ϕ in non-local regularization

in Appendix B. Figure (2.1) shows the penalty functions for different metrics and the

corresponding shrinkage weights. We observe that the derived shrinkage rule for the

sx,q sub-problem is only exact for the convex hull approximation r̂ in (2.18). However,

note the Huber-like approximations of the penalties corresponding to r̂ specified by

(2.19) approach the original penalty as β →∞.

2.4 IMPLEMENTATION

We now focus on the implementation of the sub-problems. Specifically, we show

that all of the above steps can be solved analytically for many penalties and mea-

surement operators A that are diagonalizable by the Fourier domain (e.g. Fourier

sampling, deblurring). This enables us to realize a computationally efficient algo-

rithm. We also introduce a continuation scheme to improve the convergence of the

algorithm.
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2.4.1 Analytical Solution of equation (2.11) in the Fourier Domain

The Euler-Lagrange equation for equation (2.12) is given by:


2AHA + λβ

∑

q∈N
DH

q Dq


 f = 2AHb + λβ

∑

q∈N
DH

q hq (2.23)

Here BH denotes the Hermitian transpose of matrix B. We now aim to solve for f ,

assuming hq; q ∈ N in the left hand side of equation (2.23) to be pre-determined from

the previous iterate fn−1. Thus, this step involves the solution to a linear system of

equations. Motivated by analytical solutions to similar problems in the context of

total variation minimization [72], we propose to solve for equation (2.23) in the Fourier

domain. Specifically, the measurement operator A is diagonalizable in the Fourier

domain in many inverse problems of interest (e.g. Fourier sampling, deblurring). In

these cases, we may write AHA as a pointwise multiplication in the Fourier domain.

For instance, in the particular case when A is a Cartesian Fourier undersampling

operator, we may write

AHAf = F−1(a • F(f)) (2.24)

where F discrete Fourier transform and a is a vector of ones and zeros corresponding

to the Fourier sample locations. It is well-known that the operators DH
q Dq are cir-

culant under periodic boundary conditions on f (see [72] for example) and hence are

diagonalizable in the Fourier domain as

DH
q Dq f = F−1(|dq|2 • F(f)), (2.25)

where |dq|2 is the pointwise modulus squared of the Fourier multiplier dq correspond-

ing to Dq. Hence, taking the DFT of both sides of equation (2.23) we have:


2a + λβ

∑

q∈N
|dq|2


 • F(f) = 2b0 + λβF


∑

q∈N
DH

q hq
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where b0 = F(AHb) ∈ CM is a zero-padded version of the Fourier samples b ∈ CN .

Solving for f gives

f̂ = F−1



2b0 + λβF
(∑

q∈N DH
q hq

)

2a + λβ
∑

q∈N |dq|2


 (2.26)

where the division occurs entrywise. Note that we have omitted the iteration step

n from the above equation. Strictly speaking, it is an update for f̂ , assuming hq

to be determined from fn−1. In inverse problems such as non-Cartesian MRI and

parallel MRI, where the measurement operator A is not diagonalizable in the Fourier

domain, we solve equation (2.23) efficiently using conjugate gradient (CG) algorithm,

as will be shown in the second and third aim. A few CG steps at each iteration are

often sufficient for good convergence since the algorithm is initialized by the previous

iterate.

2.4.2 Efficient Evaluation of Shrinkage Weights

We now focus on the efficient evaluation of vq(x); ∀q ∈ N in (2.15). Note that

uq(x) involves the comparison of the patches Px(f) and Px+q(f); since these quanti-

ties have to be computed for all spatial locations x and different shifts q, the direct

evaluation of (2.15) is computationally expensive. We propose to exploit the redun-

dancies between vq(x) to considerably accelerate their computation. From (2.15), we

have

uq(x) = ν




√√√√√√

∑

p∈B

‖f(x− p)− f(x− p + q)‖2

︸ ︷︷ ︸
(|Dqf |2 ∗ η)(x)



.

(2.27)
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Here η is a moving average filter with the size of the patch. The above equation implies

that computing uq(x); ∀x can be obtained efficiently by simple pointwise operations

and a computationally efficient convolution operation. Combining the above result

with (2.15), we obtain

vq =

[
ν

(√
|Dqf |2 ∗ η

)]

︸ ︷︷ ︸
uq

∗ η (2.28)

We realize the convolutions |Dqf |2 ∗ η and uq ∗ η using separable moving average

convolution operations. This approach has some similarities to [73], where moving

average filters were used to speed up the non-local means algorithm.

2.4.3 Continuation Strategy to Improve Convergence

The quality of the majorization in equation (2.8) depends on the parameter β.

It is known that high values of β results in poor convergence. However, since we

require the convex-hull approximation of the original penalty for the majorization,

the solution of the proposed scheme corresponds to that of the original problem only

when β →∞. Hence we use a continuation strategy to improve the convergence rate,

where β is initialized with a small value and is increased gradually to a high value [4].

As discussed in [4], we use homotopy continuation on the penalties to encourage

convergence to global minima. For example, with truncated penalties we start with

a large threshold T and gradually decrease it until it attains a small value. In all the

experiments, we initialize β to 1e-2 and set βincfactor = 2 while we set Tdecfactor = 1.1.

The pseudo-code of the algorithm is shown below.
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Algorithm 2.4.1: NonLocal Shrinkage(A,b, λ)

Input : b = k-space measurements

β = βinit; T = Tinit;

while i < # Outer Iterations

do





while j < # Inner Iterations

do





Shrinkage: Compute vq using equation (2.15)

Compute hq using equation (2.14)

Update f using equation (2.26)

β ← β ∗ βincfactor
T ← T ∗ Tdecfactor

return (f)

We observe that the proposed algorithm is similar in structure to our previous

algorithm [4], shown below.

Algorithm 2.4.2: Reweighted MM (A,b, λ, σ)

Input : b = k-space measurements

T = Tinit;

while i < # Outer Iterations

do





while j < # Inner Iterations

do





Update wx,y using (16) in [4]

Compute γx,y using (20) in [4]

Update f by solving (26) in [4]

T ← T ∗ Tdecfactor
return (f)

Evaluating f according to [equation (2.26)] requires one FFT and one IFFT. We

typically need 10 - 20 inner iterations and about 30 - 40 outer iterations for the best

convergence and recovery. All the experiments were performed in MATLAB 2012 on
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a Linux Intel Xeon workstation machine with four cores, 3.2 GHz CPU and 32 GB

RAM.

2.5 RESULTS

We focus on the application of this scheme for the recovery of MR images from

undersampled measurements. All the datasets used in this aim research were acquired

on the Siemens 3T Tim Trio scanner at the University of Iowa. The datasets were

collected under a protocol approved by the Institutional Review Board (IRB) at the

University of Iowa and an informed consent was obtained from the subjects prior to

the scan.

2.5.1 Convergence Rate

We first compare the proposed scheme with our previous iterative reweighted

non-local algorithm [4]. We considered the recovery of an MR brain image used in

Fig. 2.4 from its retrospectively undersampled Fourier measurements using a variable

density random sampling pattern (see Fig. 2.4.(e) for an example). The regularization

parameters of both algorithms were set to λ = 10−4; this parameter was chosen to

obtain the best possible reconstructions. The number of inner iterations and outer

iterations in both the algorithms were set to 5 and 45, respectively. The maximum

number of CG iterations to solve each quadratic subproblem in IRW scheme was set

to 10. The tolerance values for all loops in both algorithms were set to 1e-8.

The convergence plots of the two algorithms as functions of computation time

and number of iterations are shown in Fig. 2.3. We observe that both algorithms

converge to almost the same final cost. However, the non-local shrinkage (NLS) al-

gorithm is around ten times faster than the iterative reweighted (IRW) scheme in

terms of computation time; the NLS scheme took around 17 seconds, while the IRW

required 172 seconds to converge. All the weight updates in IRW together took a

total of 9.4 seconds, while the shrinkage steps in NLS took a total of 12.0 seconds.
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The main difference in complexity between the algorithms can be attributed to the

analytical solution of f in the NLS scheme, which took only 0.4 seconds for all 225

inner iterations. At the same time, solving the quadratic subproblems in IRW us-

ing CG took around 163 seconds for all 225 inner iterations. We observe that the

condition number of the quadratic subproblem in iterative reweighting [4] grows with

iterations, resulting in slow convergence of the CG algorithms especially in later itera-

tions. The speedup offered by using an additive half-quadratic majorization specified

by equation (2.8) is consistent with using this method in non-patch regularization

schemes [70].

2.5.2 Impact of the Distance Metric

The proposed scheme can be adapted to most non-local distance metrics by simply

changing the shrinkage rule. The shrinkage rules for different non-local penalties are

shown in Fig. 2.1. In Table 2.1 we compare the different metrics in the context of

recovering three MR images from five fold randomly undersampled data. Here we

quantify the reconstruction quality by the signal-to-noise ratio (SNR), defined as

SNR = 20 log10

( ||Γorig||F
||Γrec − Γorig||F

)
,

where Γorig is the original image, Γrec is the recovered image, and ||·||F is the Frobenius

norm. The parameters of all the algorithms are optimized to provide the best possible

SNR. The first column corresponds to the convex `1 differences between patches.

The second and third columns correspond to alternating H1 and NLTV penalties [4],

respectively.

All of the penalties saturate with inter-patch distances except the `1 distance

function. This explains the poor performance of the convex `1 penalty compared

to the non-convex counterparts. Unlike local total variation, which only compares a

particular pixel with a few other pixels, several pixel comparisons are involved in non-
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Table 2.1: (SNR in dB) Impact of the distance metric on the reconstructions. We compare
the reconstructions obtained using the non-local shrinkage algorithm using `1, H1, NLTV,
thresholded `1 and thresholded `p; p = 0.5 metrics. All the metrics, except the convex `1
scheme are saturating priors. We observe that saturation is key to good performance of
non-local algorithms. Among the different metrics, the thresholded `p penalty is observed
to provide the best results in all the examples.

Image `1 H1 NLTV `1-T `p-T

Brain1 19.8 22.8 23.0 21.4 23.4
Brain2 18.0 20.2 21.1 19.5 22.9
Head 19.1 19.2 19.5 19.3 19.9

local regularization. Saturating priors are needed to avoid the averaging of dissimilar

patches, which may result in blurring. Since the saturating `p metric provides the

best overall reconstructions, we use this prior for remaining comparisons.

2.5.3 Comparisons With State-of-the-Art Algorithms

We compare the proposed scheme with local total variation regularization (TV)

and the dictionary learning MRI (DLMRI) scheme [1] using retrospectively under-

sampled MRI data. Specifically, the Fourier samples of the images on the specified

sampling mask are used for reconstruction using different algorithms. These recon-

structions are compared to the original image. We relied on the MATLAB implemen-

tation of DLMRI available from the authors webpage, which was adapted to account

for complex MR images. The regularization parameters of all the algorithms have

been optimized to yield the best SNR. The comparison of the above methods in the

context of random sampling with 5 fold undersampled data in the absence of noise

is shown in Fig. 2.4. This fully sampled 128×128 MR brain image was acquired

using a Turbo spin echo (TSE) sequence, FOV=22x22 cm2, slice thickness=5.0 mm.

The under sampling pattern in (e) was generated using a Monte-Carlo algorithm [74],

which may be realized in 3D imaging by choosing the readout to be orthogonal to

the image plane. We observe that the proposed non-local algorithm provides better
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Figure 2.3: Comparison of the convergence rate of the iterative reweighted (IRW) algorithm
and the proposed iterative non-local shrinkage (NLS) algorithm. The plots indicate the
evolution of the cost function in [equation (2.2)] as functions of (a) the CPU time and (b)
number of inner iterations in NLS and CG steps in IRW. Both NLS and IRW algorithms
converged in around 225 inner iterations. However, the IRW scheme needed around 9 CG
steps/inner iteration on average, requiring a total of 2200 (see Algorithms IV.1 and IV.2).
Since each inner iteration in NLS is considerably faster than the corresponding one in [4],
we obtain a speedup of approximately ten fold.

preservation of edge details. The quantitative comparisons of different methods on

the retrospective under sampling of more MR images in the absence of noise and five

fold random undersampling are reported in Table 2.2. We observe that NLS provides

a consistent 1-4 dB improvement over other state-of-the-art methods.

Table 2.2: (SNR in dB) Quantitative comparison of the proposed iterative non-local shrink-
age (NLS) algorithm using the saturating `p; p = 0.5 penalty with dictionary learning MRI
(DLMRI) [1] and local total variation regularization (TV) schemes in the absence of noise.
We considered five-fold random undersampling.

Image DLMRI TV NLS

Brain 16.6 19.3 23.4
Brain2 17.5 21.0 22.9
Thigh 16.3 22.0 24.0
Calf 19.1 21.2 22.5
Head 18.6 19.6 19.9
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(a) Original image (b) NLS, SNR=23.3dB (c) TV, SNR=19.2dB (d) DLMRI, SNR=16.6dB

(e) Sampling pattern (f) NLS error (g) TV error (h) DLMRI error

Figure 2.4: Comparison of the algorithms in the absence of noise. We consider the recovery
of a 128×128 MR brain image from 5 fold undersampled Fourier samples, acquired using a
random sampling pattern shown in (e) using non-local shrinkage scheme (NLS), DLMRI and
local TV. The reconstructions are shown in (b)-(d). The corresponding error images, scaled
by a factor of 5 for better visualization, are shown in the bottom row. The reconstructions
show that the NLS scheme is capable of better preserving the edges and details, resulting
in less blurred reconstructions. Note that this example was used as an illustration; the
proposed 2-D under sampling pattern on the dataset acquired using a 3-D sequence is not
very realistic. We also used a high acceleration factor to demonstrate differences between
the methods; thus the resulting images may not be of diagnostic quality.

2.5.4 Performance With Noise

We study the performance of the proposed algorithm in the context of recover-

ing MR images from their retrospectively undersampled measurements using differ-

ent sampling trajectories in the presence of noise. The reconstructions of 512×512

MR head complex image from its three-fold Cartesian retrospectively undersampled

Fourier data, corrupted with zero mean complex Gaussian noise are shown in Fig. 2.5.

The SNR of the noisy measurements was 25.0 dB. This is a really challenging case

since the 1-D downsampling pattern is considerably less efficient than 2-D random

sampling. We observe that the non-local algorithm provides better reconstructions



www.manaraa.com

31

(a) Original image (b) NLS,
SNR=20.6dB

(c) TV,
SNR=18.1dB

(d)
DLMRI,SNR=14.1dB

(e) Sampling pattern (f) NLS error (g) TV error (h) DLMRI error

Figure 2.5: Comparison of the algorithms in the presence of noise. We consider the recovery
of a 512×512 MR head complex image from three-fold undersampled k-space data, acquired
using a Cartesian sampling pattern contaminated by zero mean complex Gaussian such
that the SNR value after adding the noise is 25.0 dB. The top row shows the original
and reconstructed images using non-local shrinkage scheme (NLS), DLMRI and local TV.
The reconstructions are shown in (b)-(d). The corresponding error images as well as the
sampling pattern are shown in the bottom row. This is a challenging case due to the high
1-D undersampling factors and noise. We observe that the NLS scheme provides better
reconstructions with minimal aliasing artifacts. Note that this example was used as an
illustration; the proposed 2-D under sampling pattern on the dataset acquired using a 3-
D spin-echo sequence is not very realistic. Note that we used a high acceleration factor
to demonstrate differences between the methods. The resulting images may not be of
diagnostic quality.
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than the other schemes. Specifically, the TV scheme results in patchy artifacts and

are over-smoothed. The DLMRI results in blurring and loss of details. By contrast to

the classical algorithms, the degradation in performance of the non-local algorithm is

comparatively small. The quantitative comparisons of the algorithms on this setting

using different MR images are shown in the top section of Table 2.3.

We also consider the recovery of five various MR images from their pseudo-radial

samples acquired with 70 spokes/frame, which approximately corresponds to an accel-

eration factor of 4.2. The radial samples are approximated by the nearest Cartesian

samples. The quantitative results in this setting for those MR images are shown in

the bottom section of Table 2.3. The Fourier measurements are corrupted with zero

mean complex Gaussian noise of a specific variance. The SNR of the corresponding

k-space measurements is reported in the second column. All methods are observed to

result in loss of subtle image features since the acceleration factor and the noise level

are high. But we also observe that the NLS scheme provides better recovery than the

competing methods. The SNR improvement offered by NLS over the other methods

in this experiment is not as high as in the previous cases, mainly due to the consider-

able noise in the data and the high acceleration. All of the above experiments were

conducted at high acceleration factors to demonstrate the performance improvement

offered by the proposed scheme. We show in Fig. 2.6 the recovery of three MR

images from Fourier samples corresponding to low accelerations, contaminated with

zero mean complex Gaussian noise. These experiments show that the NLS scheme

can be used to obtain good quality reconstructions at moderate acceleration factors

and noise levels.

2.5.5 Validation using non-Cartesian MRI data

We consider the recovery of multichannel multi-shot spiral MRI data using the pro-

posed scheme and TV regularization in this subsection. These datasets were acquired

using a spin-echo variable density multi shot spiral acquisition with 22 interleaves,
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(a) Sampling pat-
tern

(b) Original (c) NLS, SNR=23.7dB

(d) Sampling pat-
tern

(e) Original (f) NLS, SNR=22.2dB

(g) Sampling pat-
tern

(h) Original (i) NLS, SNR=23.4dB

Figure 2.6: Comparison of three different MR images using NLS scheme in the presence of
noise. The Fourier samples are contaminated by zero mean complex Gaussian noise such
that the SNR of the data corresponding to the head, brain2 and calf images are 32.3, 24.7
and 27.6 dB, respectively. The top row shows the recovery from 2 fold acceleration using
the Cartesian sampling pattern, while the middle one shows the recovery from 100 radial
spokes (≈3 fold acceleration). The bottom row shows the recovery from 3 fold acceleration
using random pattern. We observe that the NLS scheme is capable of preserving the key
image details.
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192×192 matrix and a 12 channel head array. The fully sampled dataset is recovered

from all 22 interleaves and four of the important coils using total variation regular-

ization. Specifically, each of the channels were reconstructed independently from the

measured k-space data and the coil sensitivities were estimated from them. These coil

sensitivities were used to recover the images from undersampled data. The forward

and backward models are implemented using the non-uniform fast Fourier transform

(NUFFT) [75,76]. Since the forward model is a non-Cartesian Fourier transform, we

are no longer able to use the analytical solution (2.26). We instead use the conjugate

gradient algorithm (CG) to solve (2.23). We set the maximum number of CG itera-

tions to 20 and the the previous iterate was set as the the initial guess. We observe

that very few CG iterations (average of 3-4) are needed in each inner iteration, thanks

to the good conditioning of (2.23), especially at later iterations.

The undersampled data was recovered from the measured k-space data corre-

sponding to a random subset of 7 interleaves of the above four channels. We re-

Table 2.3: Quantitative comparison of the algorithms in the presence of noise. The top part
shows the SNR of the reconstructions obtained from 3 fold Cartesian undersampled data.
The bottom part shows the SNR of the reconstructions from radial undersampled data with
70 spokes. Both experiments are contaminated by zero mean complex Gaussian noise such
that the SNR of the noisy images are reported in the table. The quantitative results show
that the proposed iterative NLS scheme provides consistently better reconstructions for the
above cases.

Image k-space SNR DLMRI TV NLS

Brain 12.9 13.9 15.0 16.8
Brain2 11.7 15.9 16.1 18.5
Thigh 10.7 12.6 18.7 21.7
Calf 12.6 15.9 18.5 20.6
Head 11.0 14.1 18.1 20.3

Brain 11.6 14.6 17.6 17.3
Brain2 15.4 17.0 17.7 18.0
Thigh 12.4 13.8 17.2 20.0
Calf 8.3 9.3 16.7 19.0
Head 13.4 17.9 18.1 18.2
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covered the images using the different algorithms. The forward model in this case

is the non-Cartesian Fourier transform of the coil sensitivity weighted images, using

the coil sensitivities estimated from fully sampled data1. We use the CG algorithm

with the same settings as above to solve (2.23). We did not use any pre-conditioners

in the present study; we expect to further reduce the computational complexity in

the future using efficient preconditioners. We only compare our recovery against TV

as it was difficult to modify the DLMRI scheme to the non-Cartesian setting. We

show the acquisition from two subjects in Fig. 2.7. The trajectories corresponding

to the datasets are shown in the first column. The data from the second subject

(bottom slice) had considerable off-resonance losses since the slice was close to the

frontal sinuses and the ear regions. In addition, it also suffered from inter-shot mo-

tion that resulted in inconsistencies between the interleaves. The comparisons clearly

show the benefit of the proposed scheme in a practical setting. Specifically, the NLS

reconstructions preserve fine details better than TV regularization.

2.6 DISCUSSION AND CONCLUSION

In this chapter we introduced a fast iterative non-local shrinkage algorithm to

recover MR image data from undersampled Fourier measurements. This approach is

enabled by the reformulation of current non-local schemes as an iterative re-weighting

algorithm to minimize a global criterion [4]. The proposed algorithm alternates be-

tween a non-local shrinkage step and a quadratic subproblem, which can be solved

analytically and efficiently. We derived analytical shrinkage rules for several penalties

that are relevant in non-local regularization. We accelerated the non-local shrinkage

step, whose direct evaluation involves expensive non-local patch comparisons, by ex-

ploiting the redundancy between the terms at adjacent pixels. The resulting algorithm

is observed to be considerably faster than our previous implementation. The com-

1This is justified since many methods such as fMRI can acquire fully sampled anatomical images,
while the functional data needs to be acquired rapidly.
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(a) Spiral trajec-
tory

(b) Fully sampled (c) NLS (d) TV

(e) Spiral trajec-
tory

(f) Fully sampled (g) NLS (h) TV

Figure 2.7: Comparison of MR brain images using NLS and TV algorithms from un-
dersampled multichannel multi-shot spiral data. The fully sampled data was acquired
using a multishot spiral sequence with 22 interleaves acquired using 12 channels. All
the interleaves were used to recover the fully sampled datasets, while only 7 randomly
chosen interleaves were used to recover the undersampled datasets. The retained in-
terleaves are shown in the first column. We only used the data corresponding to
four important coils for the recovery. The two rows corresponds to two slices in the
acquisition. The recovery of the lower slice was considerably challenging due to field
inhomogeneity losses and subtle physiological motion between interleaves; this ex-
plains the poor recovery of the datasets. The two rows show the spiral trajectory,
original and reconstructed images. Both the proposed and TV regularized reconstruc-
tions are seen to have lower SNR, mainly due to decreased number of measurements.
However, we observe that the proposed scheme provides sharper reconstructions.
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parison of different penalties demonstrated the benefit in using distance functions

that saturate with distant patches. The comparisons of the proposed scheme with

state-of-the-art algorithms show a considerable reduction in alias artifacts and better

preservation of edges.

2.7 Appendix A: Simplification of Eq (2.11)

Using the formula for the shrinkage from (3.10), specified by

sx,q = (Px(f)− Px+q(f)) ν (‖Px(f)− Px+q(f)‖) ,

we obtain

R(f) =
∑

x;q∈N

‖Px(f)− Px+q(f)− sx,q‖2. (2.29)

Expanding the above expression:

R(f) =
∑

x;q∈N

∑

p∈B
|f(x + p)− f(x + q + p)− sx,q(p)|2 (2.30)

We use a change of variables x = x + p to obtain:

R(f) =
∑

x;q∈N

∑

p∈B
|

e(x,q)︷ ︸︸ ︷
f(x)− f(x + q)−sx−p,q(p)|2

=
∑

x;q∈N
|e (x,q)|2 − 2

∑

x;q∈N
e (x,q)

∑

p∈B
sx−p,q(p)

︸ ︷︷ ︸
hq(x)

+c

=
∑

x;q∈N
|f(x)− f(x + q)− hq (x)|2 + c− d. (2.31)

In the above equations, c =
∑

x;q∈N ;p∈B |sx−p,q(p)|2 and d =
∑

x;q∈N |hq(x)|2. Since

the solution to (2.11) does not depend on the constants, we ignore these terms. Thus,
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(2.30) can be rewritten using (2.31) as

R(f) =
∑

x;q∈N

‖ f(x)− f(x + q)︸ ︷︷ ︸
Dqf

−hq(x)‖2

Here, Dqf(x) = f(x + q) − f(x) is the finite difference operator. We observe that

the expression for hq(x)

hq(x) =
∑

p∈B

sx−p,q(p), (2.32)

can be further simplified. From (3.10), we have the patch s specified as

sx,q = (Pxf − Px+qf) ν (‖Pxf − Px+qf‖)︸ ︷︷ ︸
uq(x)

Here, uq(x) = ν (‖Pxf − Px+qf‖) is the factor between 0 and 1, which is multiplied

by the patch to get the shrinked patch. Hence,

sx,q(r) = [f(x + r)− f(x + q + r)] · uq(x); r ∈ B.

Thus, we have

sx−p,q(p) = [f(x)− f(x + q)] uq(x− p). (2.33)

Substituting in (3.13), we get

hq(x) = (f(x)− f(x + q))
∑

p∈B

uq(x− p)

︸ ︷︷ ︸
vq(x)

. (2.34)
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2.8 Appendix B: Shrinkage rules for useful non-local distance functions

2.8.0.1 Thresholded `p; p ≤ 1 metric

We now consider the saturating `p metric, specified by

φ(t) =




|t|p/p if |t| < T

T p/p else
(2.35)

Computing the shrinkage rule for this mapping according to (2.22), we obtain

ν(t) =





0 if |t| < β1/(p−2)

1− 1
β
|t|p−2 if β1/(p−2) ≤ |t| < T

1 else

(2.36)

Setting T =∞ we get the shrinkage rule for the unthresholded `p metric as

ν(t) =





0 if |t| < β1/(p−2)

1− 1
β
|t|p−2 else

, (2.37)

which is consistent with [3].

2.8.0.2 Penalty corresponding to alternating H1 non-local scheme

We now consider the H1 metric, specified by

ϕ(t) = 1− exp

(
− t2

2σ2

)
. (2.38)

From (2.22) we obtain

ν(t) =





0 if exp
(
− t2

2σ2

)
> βσ2

1− exp
(
− t2

2σ2

)
βσ2 else

(2.39)



www.manaraa.com

40

2.8.0.3 Penalty corresponding to Peyre’s non-local scheme

We now consider the penalty corresponding to Peyre’s alternating scheme [4,77]:

φ(t) = 1− exp

(
− t
σ

)
. (2.40)

From (2.22) we obtain

ν(t) =





0 if exp
(
− t
σ

)
> βσt

1− exp(− t
σ )

βσt
else

(2.41)

2.8.0.4 Penalty corresponding to alternating non-local TV scheme

The penalty function for the alternating non-local TV scheme is specified by [4,78]:

φ(t) = erf

(
t

σ

)
. (2.42)

From (2.22) we obtain

ν(t) =





0 if 2√
π

exp
(
− t2

σ2

)
> βσt

1− 2√
π

exp
(
− t2

σ2

)
βσt else

(2.43)
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CHAPTER 3
ACCELERATED MRI USING PATCH REGULARIZATION FOR

IMPLICIT MOTION COMPENSATION

3.1 ABSTRACT

An efficient patch smoothness regularization scheme, which implicitly compensates for

inter-frame motion, is introduced to recover dynamic MRI data from highly undersam-

pled measurements. The regularization prior is a sum of distances between each rectan-

gular patch in the dataset with other patches in the dataset using a saturating distance

metric. Unlike current motion estimation and motion compensation (ME-MC) methods,

the proposed scheme does not require reference frames or complex motion models. The

proposed algorithm, which alternates between inter-patch shrinkage step and conjugate

gradient algorithm, is considerably more computationally efficient than ME-MC methods.

The reconstructions obtained using the proposed algorithm is compared against state-of-

the-art methods. The proposed method is observed to yield reconstructions with minimal

spatiotemporal blurring and motion artifacts. In comparison to the existing state-of-the-

art ME-MC methods, PRICE provides comparable or even better image quality with faster

reconstruction times (approximately nine times faster). The presented scheme enables com-

putationally efficient and effective motion-compensated reconstruction in a variety of appli-

cations with large inter-frame motion and contrast changes. This algorithm could be seen as

an alternative over the current state-of-the-art ME-MC schemes that are computationally

expensive.

3.2 THEORY

3.2.1 Dynamic MRI: Model Of The Acquisition Scheme

The multi-coil undersampled acquisition of the dynamic MRI dataset f(x, y, t) : Z3 → C

can be modeled as:

bi(kx, ky, t) =

∫

x,y
f(x, y, t) si(x, y)e j(kx x+ky y) dx dy + n(kx, ky, t). (3.1)
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Here, b(kx, ky, t) represents the k-space measurements from all the coils, while f(x, y, t) is

the dynamic dataset, and si(x, y) denotes the ith coil sensitivity pattern. We assume n to

be a complex zero mean Gaussian distributed white noise process of a specified standard

deviation σ. The above relations can be compactly expressed in the vector form as

b = Af + n, (3.2)

where A is the forward model. From now on, we will consider the dynamic dataset f as a

3-D volume indexed by the variable r = (x, y, t).

3.2.2 Implicit Motion Compensation Using Patch Regularization

Unlike the cost function in equation (2.2) mentioned in chapter 2 where f is a 2D

matrix, and A is single channel undersampling operator, here we propose to recover the dy-

namic dataset f from its undersampled measurements as the patch regularized optimization

problem as:

f̂ = arg min
f
‖Af − b‖2 + λ G(f)︸ ︷︷ ︸

C(f)

, (3.3)

The regularization penalty G(f) is the sum of robust distances between patches:

G(f) =
∑

r

∑

q∈N
ϕ (‖Pr(f)− Pr+q(f)‖`2) . (3.4)

Like the patches extracted in chapter 2, here Pr(f) is a patch extraction operator, which

extracts a square shaped 2-D image patch of dimension (N + 1)× (N + 1)× 1, centered at

the spatial location r from the dynamic dataset f(r):

Pr(f) = f(r + p), p ∈ B. (3.5)

Here, B = [−N/2, ..N/2] × [−N/2, ..N/2] × 1 is the set of indices of the patch. Note from

equation (3.3) that we compare each patch Pr(f) in the dataset with other patches Pr+q(f) in

a cube-shaped neighborhood N ∈ [−M/2, ..M/2]× [−M/2, ..M/2]× [−M/2, ..M/2] around
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r (see Fig 3.1.a). Even though it is fixed in our study, the size of the neighborhood may be

chosen depending on the severity of inter-frame motion. Specifically, the size of the search

neighborhood (M) may need to be increased in high-resolution datasets or datasets with

high inter-frame motion such as dynamic free-breathing lung MRI where there is a consid-

erably large amount of cardiorespiratory motion. While the formulation equation (3.3) has

similarities to block matching used in k-t FOCUSS with ME-MC [50], the distinguishing

aspect is a unifying cost function that captures both motion estimation and compensation.

The comparisons of each patch with its neighbors are performed using the distance

metric ϕ. While convex `1 metrics could be chosen, our comparisons in the first aim show

that the thresholded `p, 0 < p < 1, metric

ϕ(t) =





|t|p/p if t < T

T p/p if t ≥ T.
(3.6)

provides the best reconstruction with 2-4 db gain over p = 1 without thresholding [2].

Compared to convex penalties, the proposed saturating priors (see dotted curve in Fig 3.1.b)

minimizes the averaging of dissimilar patches, thus resulting in less blurred reconstructions.

For example, while a patch pair with difference greater than T will still contribute to a

constant term of T p/p in the cost, a small shrinkage of these inter-patch distances will not

reduce the cost. This behavior translates to patch differences above T not being shrunk

at each iteration as seen from equation (3.10) (see also Fig 3.1.c). By contrast, a non-

saturating `1 penalty shrinks all patch differences, irrespective of the size of differences,

resulting in blurring.

3.2.3 Iterative Patch Shrinkage Algorithm

We use the majorization of the patch regularization penalty G(f) to develop an iterative

patch shrinkage algorithm to solve equation (3.3). Approximating the distance metric in

equation (3.6) (dotted line in Fig 3.1.b) by its smoothed Huber-like versions, we rewrite the
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cost function with the approximated penalties as:

Cβ(f) = min
{sr,q}

‖Af − b‖2 + λ
∑

r

∑

q∈N
ψβ(‖sr,q‖) +

λβ

2

∑

r,q

‖Pr(f)− Pr+q(f)− sr,q‖2. (3.7)

Here, sr,q is an auxiliary variable, which can be interpreted as a denoised version of the

inter-patch difference (Pr(f) − Pr+q(f)). The above simplification is enabled by the half

quadratic majorization of ϕ [19, 20,70,79]:

ϕ(t) = min
s

{
ψβ(s) +

β

2
(s− t)2

}
. (3.8)

The above majorization rule can be rewritten as:

t2

2
− 1

β
ϕ(t)

︸ ︷︷ ︸
r(t)

= max
s




s t−

(
1

β
ψβ(s) +

s2

2

)

︸ ︷︷ ︸
g(s)





(3.9)

From the theory in [71], the above relation is satisfied when g = r∗, the Legendre-Fenchel

dual of r, specified by r∗(s) = maxt {s t− r(t)}. Thus, we obtain ψβ(s) = β
(
r∗ (s)− s2/2

)
.

When r is not convex, we approximate it by the closest convex function of r; see [2] for

details.

We use an alternating minimization algorithm to recover f as well as the denoised inter-

patch differences sr,q from multi-coil undersampled k - t measurements. We observe that

the reformulation in equation (3.7) is remarkably similar to variable splitting; the only

difference is that ψβ = ϕ in the variable splitting formulation. If variable splitting strategy

were used, one would be able to speed up the algorithm using alternating direction method

of multipliers (ADMM). However, a challenge with ADMM schemes is the lack of monotonic

convergence. While it is acceptable with convex cost functions, it may result in issues of

convergence to local minima when non-convex distance metrics such as equation (3.6) are

used. The monotonic convergence guaranteed by majorize-minimize framework is desirable

in this setting. We also introduce continuation strategies to minimize the risk of local

minima.
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Step 1: Determination of denoised inter-patch differences sr,q: When the variable

f is a constant, the determination of the auxiliary variables sr,q corresponding to different

values of r and q can be decoupled. Specifically, the recovery of a specific patch ŝr,q

simplifies to a shrinkage step similar to soft thresholding:

ŝr,q = [Pr(f)− Pr+q(f)] ν (‖Pr(f)− Pr+q(f)‖) . (3.10)

The shrinkage rules for a variety of distance metrics are specified in [2]. For example, when

ϕ is the thresholded `p metric equation (3.6), we have

ν(t) =





0 if |t| < β1/(p−2)

1− 1
β |t|p−2 if β1/(p−2) ≤ |t| < T

1 else.

(3.11)

Note from equation (3.10) and equation (3.11) that the smaller inter-patch differences are

set to zero or shrunk, while the large inter-patch differences are preserved. The shrinkage

rule is illustrated in Fig 3.1.c.

Step 2: Determination of the dataset f : If we assume the auxiliary variables sr,q to

be fixed, the minimization of equation (3.7) with respect to f simplifies to a quadratic

subproblem. Combining the terms from adjacent patches for computational efficiency (see

Appendix of [2] for details), we simplify this subproblem as:

f̂ = arg min
f
‖Af − b‖2 + λ

β

2

∑

q∈N
‖Dqf − hq‖2. (3.12)

Here, hq(x) is specified by the sum of ŝr,q terms from the adjacent patches:

hq(x) =
∑

p∈B
ŝx−p,q(p), (3.13)

The operator Dq in equation (3.12) is the finite difference operator

(Dqf)(x) = f(x)− f(x + q). (3.14)
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For example, (D(1,0)f)(r) = f(r)−f(r+(1, 0, 0)) is the standard horizontal finite difference

operator. Note that by using equation (3.10) in equation (3.12), the terms with inter-

patch differences greater than T will still contribute to a constant term of T p/p in the cost.

This behavior translates to patch differences above T not being shrunk at each iteration

as seen from equation (3.11) (see also Fig 3.1.c) while the terms with smaller inter-patch

differences are penalized. We solve equation (3.12) efficiently using conjugate gradient (CG)

algorithm.

3.3 METHODS

The breath-held CINE dataset considered in this study is distributed as part of the

MASTeR software package [57], while the free breathing Cartesian dataset was acquired at

New York University [80]. The perfusion datasets were both acquired at the University of

Utah. All the datasets used in this note were acquired under protocols approved by the

Institutional Review Board (IRB) of the respective institutions.

3.3.1 Experiments Involving Cardiac CINE MRI

We first consider the retrospective undersampling of a fully sampled ECG-gated Carte-

sian breath-held dataset, acquired using a steady-state free precession (SSFP) sequence

using a five channel cardiac array. The scan parameters were TE/TR= 2.0/4.1 ms, flip

angle=45◦, FOV=350 mm2, slice thickness=12 mm, 8 views per segment, 224 phase-

encoding lines, 256 read-out samples and 16 temporal frames. This dataset was undersam-

pled by keeping a subset of the 224 phase-encoding lines consisting of a fully sampled low-

frequency region (eight low-frequency lines) and a pseudo-randomly sampled high-frequency

region chosen according to a Gaussian density; the specific pseudo random subsets varied

from frame to frame.

In the second experiment, we consider the recovery of a prospectively undersampled

free-breathing and prospectively ECG-gated cardiac CINE dataset. The data was acquired

using a steady state free precession (SSFP) sequence on Siemens 3T scanner with 12 coil

elements total (body and spine coil arrays). The acquisition parameters were FOV: 320

mm2, matrix 128×128, TE/TR = 1.37/2.7 ms, BW: 1184 Hz/pixel, and flip angle = 40◦.
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The acquisition lasted for two heart beats, while the subject was freely breathing, resulting

in 16 lines/frame. The sampling pattern varies from frame to frame; some of the frames

are sampled with dense low-frequency region, while the lines in other frames are sampled

randomly in the low and high-frequency region. See [80] for more details about this dataset.

3.3.2 Experiments Involving Myocardial Perfusion Imaging

In the first experiment involving perfusion data, we retrospectively undersampled a fully-

sampled Cartesian in-vivo myocardial perfusion dataset. The dataset was acquired without

ECG-gating and the subject breathed heavily during the scan. The data was acquired using

a saturation recovery FLASH sequence (with TR/TE =2.5/1 ms, saturation recovery time

= 100 ms, 1 slices, 32 coil elements total, phase encodes x frequency encodes: 108 × 288,

temporal resolution: ≈ 4frames/beat, spatial resolution: 2.5 × 2.5 × 8 mm3); the reader

is referred to [34, 81] for more details about this dataset. The dataset was retrospectively

undersampled using a Cartesian sampling pattern with a fully sampled low-frequency region

and a randomly sampled high-frequency region. To make the computational complexity

manageable, we have only considered 80 temporal frames out of 200. We only used the data

corresponding to six of the 32 channels, which best cover the heart; we did not resort to

any coil compression.

In the second perfusion experiment, we consider the retrospective undersampling of

radially sampled free-breathing stress ECG-gated myocardial perfusion data, acquired with

a saturation recovery FLASH sequence with TR/TE =2.6/1.2 ms, phase encodes x frequency

encodes: 256 × 256, 3 slices/beat, flip angle=14◦, voxel size =2.3 × 2.3 ×8 mm3, FOV:

280 mm2, bandwidth 1002 Hz/pixel. This dataset has 67 temporal frames which are all

considered for recovery. Seventy two radial spokes per frame, equally spaced over π radians

with 256 samples per spoke were acquired. The radial pattern in successive frames were

rotated by a uniform angle of π/288 radians across frames, which corresponds to a period

of 4 across time. The details of this dataset are available at [82]. We subsampled the

dataset by retaining a subset of 24 spokes per frame. To obtain incoherent sampling, the

spokes that are the closest in angles to a golden angle trajectory were retained; a similar
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subsampling strategy was used in [44]. The 72 spoke data, acquired with a four coil cardiac

array, was reconstructed using SENSE-based spatiotemporal TV regularization; simpler

gridding based reconstructions exhibited considerable streaking artifacts and were found

unacceptable for comparisons.

For all the radial acquisitions considered in this aim, we first gridded the radial data

to a Cartesian grid to avoid the use of non-uniform Fourier transform computations within

the reconstruction algorithms. Our previous experiments [44] show that the loss in image

quality resulting from this approximation is minimal.

3.3.3 Implementation Details

All the algorithms were implemented in MATLAB 2012 on a Linux Intel Xeon work-

station machine with four cores, 3.2 GHz CPU, and 32 GB RAM.

Metrics used for quantitative comparison: The retrospective reconstructions were quan-

titatively compared to reference data using the following metrics. We evaluate these metrics

in a square region of interest containing the heart.

• Signal to Error Ratio (SER): This metric gives a measure of overall accuracy in

reproducing the spatiotemporal dynamics in the heart regions and defined as:

SER = 20 log10

( ||Γorig||2
||Γorig − Γrec||2

)
,

where || · ||2 donates the `2 norm, and Γorig , Γrec denote the original and the recon-

structed images respectively.

• Normalized High Frequency Error (HFEN): It measures the quality of fine features,

edges, and spatial blurring in the images and defined as:

HFEN = 20 log10

( ||LoG(Γorig)||2
||LoG(Γorig)− LoG(Γrec)||2

)
,

where LoG is a Laplacian of Gaussian filter that capture edges. We use the same

filter specifications as [61]: kernel size of 15 × 15 pixels, with a standard deviation of
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1.5.

• The Structural SIMilarity index (SSIM): We used the toolbox introduced by [83],

with default contrast values [0.01 0.03], Gaussian kernel size of 11 × 11 pixels with a

standard deviation of 1.5 pixels to compare the reconstructions.

3.3.4 Selection of Parameters

To ensure fair comparisons in retrospective undersampling experiments, all algorithms

were run with a range of parameter values, and the parameter set that resulted in the

best SER was chosen. In the prospective experiment involving free breathing cardiac CINE

data, the parameters of all the methods were tuned manually to get the best performance.

Considering that we compare algorithms of very different flavors on datasets acquired at

different conditions, we believe that this is a reasonable strategy to ensure fair comparisons.

We used the reconstruction of the total variation regularization as an initial guess for the

DC-CS scheme [55].

We set the neighborhood and patch sizes in PRICE to 5×5×5 and 3×3×1 (N=2; M=4),

respectively for all the experiments. Our experiments (not shown here) shows that these

settings were sufficient to capture the inter-frame motion in all the applications considered

in this research; larger neighborhood sizes did not significantly improve the performance,

while they resulted in slower reconstructions. The continuation parameter β was initialized

by 0.01 and was incremented by a factor of 1.5 in each outer iteration. Similarly, T was set

to be about a half of the image maximum intensity value and divided by a small fraction

in each outer iteration. Our experiments show that p = 0.5 in equation (3.6) gave the best

tradeoff between computational complexity and quality of the reconstructions. We used 5

inner-iterations and 20 outer-iterations for all the experiments considered in this research.

These continuation strategies minimized the risk of convergence to local minimum and also

provided fast convergence; see [2] for more details. The algorithm is terminated when the

relative change in cost falls below small value ε; we have set ε as 1e-6 in our scheme.
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3.4 RESULTS

3.4.1 Results of Cardiac CINE Datasets

The reconstruction of the retrospectively undersampled cardiac CINE dataset using

PRICE, spatiotemporal total variation based algorithm (TV), k-t SLR [44], and the state-

of-the-art ME-MC methods [55, 57] are shown in Fig 3.2, along with their error images.

The Cartesian sampling pattern corresponding to an undersampling factor of 6, was used

to subsample the datasets. Two frames corresponding to peak diastole and systole cardiac

phases are shown for each scheme; the error images are scaled by a factor of 7 for better

visualization. We observe that the quality of the PRICE reconstructions is quite comparable

to the DC-CS recovery, which explicitly compensates for the motion; the error images show

that the errors associated with PRICE and DC-CS are more homogeneously distributed in

the entire image, resulting in improved SER. By contrast, the errors associated with TV

and MASTeR methods are more concentrated in the edge regions, indicating edge blurring.

The table shows a quantitative comparison of the entire methods using SER, HFEN and

SSIM metrics; all computed on the region of interest shown in first row. The run time of

PRICE, DC-CS and MASTeR were 24.4 minutes, 3.8 hours, 3.3 hours respectively. The

run time for k-t SLR was 25 minutes while TV took approximately 19 minutes.

The experiments involving prospective Cartesian undersampled free breathing CINE

data is shown in Fig 3.3. The comparisons show that the proposed scheme provides recon-

structions with lower motion artifacts and less blurring compared to DC-CS, k - t SLR,

and TV regularized reconstructions, especially near the myocardial borders and papillary

muscles. The inter-frame motion in this dataset is relatively high, making it a challenging

example. We found it difficult to optimize the parameters of MASTeR in the prospective

experiments when the ground truth are not available and hence we have excluded them

from the comparisons.

3.4.2 Results of Myocardial Perfusion MRI

The results of the retrospectively undersampled ungated and free-breathing in-vivo my-

ocardial perfusion experiment are shown in Fig 3.4. We consider the recovery from three
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fold undersampled Cartesian trajectory. The proposed algorithm is compared against DC-

CS [55], k - t SLR, MASTeR [57], and spatiotemporal total variation regularization algo-

rithm. Four frames corresponding to peak right ventricular blood enhancement, transition

between right ventricle and left ventricle, peak left ventricular blood enhancement and the

case when the enhanced blood leaves the heart are shown. The ungated acquisition enables

us to acquire diastolic and systolic frames. This dataset is quite challenging due to quite

significant cardiac and respiratory motion as well as contrast variations resulting from bolus

passage. We observe that the PRICE scheme is able to provide reconstructions with lower

spatial and temporal blurring compared to the other schemes. The quantitative metrics

show about 1- 2.5 dB improvement compared to other reconstructions. Even though DC-

CS results in crisp images, it exhibits pixelated interpolation artifacts in some frames due

to inaccuracies during correction of the highly non-rigid cardiac motion between consecu-

tive systole and diastole phases. Other authors have also reported similar artifacts when

compensating for large motion with explicit motion compensation algorithms [54]. The

run time of MATLAB CPU versions of PRICE, DC-CS and MASTeR were 18.5 minutes,

1.4 hour, 1.2 hour respectively. The run time for k-t SLR was 38 minutes while TV took

approximately 24 minutes.

The experiments on the free-breathing ECG-gated radial stress perfusion MRI datasets,

acquired from a normal subject and recovered from 24 rays are shown in Fig Fig 3.5. The

motion in this dataset is not as challenging as in the previous case since the acquisition

was ECG-gated and the subject was instructed to breath shallowly. We observe that most

of the motion compensated algorithms provide good reconstructions in this case. However,

PRICE is considerably more computationally efficient than those explicit ME-MC methods.

It is also seen from the error images that the motion compensated methods (PRICE and

DC-CS) provide reduced edge blurring and better preservation of fine features, including

papillary muscles and around the myocardium wall as shown in the red arrows. The run

time of PRICE and DC-CS were 20.6 minutes and 1.6 hours respectively while k-t SLR

took 50 minutes and TV approximately 33 minutes.
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3.5 DISCUSSION AND CONCLUSION

We introduced an iterative patch-based shrinkage algorithm to recover dynamic MRI

from highly undersampled Fourier measurements. The proposed framework alternates be-

tween a patch shrinkage step and a quadratic subproblem that is solved efficiently using

conjugate gradients algorithm. The proposed method utilizes the redundancy between

patches in nearby frames to achieve implicit motion-compensated recovery. This makes it

a computationally efficient alternative to ME-MC methods, which often require detailed

motion models, reference frames, and careful initialization to minimize the convergence to

local minimum. More importantly, the computational complexity of these methods are

rather high. By contrast, the PRICE scheme formulates the motion-estimation and motion

compensation steps into a simple cost-function, which is similar to classical total varia-

tion regularization. The comparison of PRICE against classical TV and k - t SLR schemes

demonstrates the benefits of this framework in reducing motion-induced blurring and streak-

ing artifacts. The algorithm is also seen to provide comparable or improved reconstructions

over state-of-the-art ME-MC schemes, while being considerably more computationally ef-

ficient. The experiments also show that PRICE can provide improved reconstruction of

perfusion MRI data, which indicates that it is not very sensitive to the contrast changes

between the frames. Specifically, the robust nature of the distance function minimizes the

averaging of the patches that differ considerably in contrast/intenstity, thus reduces blurring

in these regions. Note that the contrast changes are highly localized in space; the similarity

of the patches in other regions can still be exploited effectively using the proposed PRICE

algorithm. The existence of a common cost function for both motion-estimation and motion

compensation steps enable efficient continuation strategies that encourage the convergence

to the global minimum. The proposed scheme may be thought of as an implicit motion-

compensated compressed sensing scheme with computational complexity that is comparable

to classical TV methods.



www.manaraa.com

54

Figure 3.2: Recovery of a retrospectively undersampled CINE dataset using PRICE (second row;
b1-b2), explicit motion-compensated algorithms (third and fourth rows), k-t SLR and classical total
variation regularization (fifth and sixth rows). The 256×224×16 dynamic dataset, which is acquired
using ×5 coils, is retrospectively undersampled using Cartesian sampling pattern. The cropped
cardiac images of the fully sampled data corresponding to peak diastole and systole cardiac phases
are shown in (a1) and (a2). These images are cropped versions of the full frame shown in (a3). The
sampling pattern for one frame is shown in (a4). The cropped reconstructed images are shown in
the first two columns, while their error images scaled by a factor of 7 for better visualization are
shown in the last two columns. The reconstructions using the PRICE algorithm is quite comparable
to the DC-CS scheme, which explicitly compensates for the motion; the error images show that the
errors associated with PRICE and DC-CS are more homogeneously distributed in the entire image,
resulting in improved SER. By contrast, the errors with other methods (e.g. TV and MASTeR)
are more concentrated in the edge regions, indicating edge blurring. The table shows a quantitative
comparison of the entire methods using SER, HFEN and SSIM metrics; all computed on the region
of interest as shown in (a3).
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Figure 3.3: Recovery of a prospectively undersampled Cartesian CINE dataset using
PRICE, DC-CS, k-t SLR and TV algorithms. The 128×128×20 sized dataset is acquired
using 12 coils and 16 Cartesian lines per phase. Two frames corresponding to peak diastole
and systole cardiac phases are shown for each scheme along with their zoomed versions
around the square box as shown in (b1). The sampling pattern varies from frame to frame;
the sampling masks corresponding to two different frames are shown in (a2) and (a3). We
observe that TV and k - t SLR reconstructions exhibit temporal blurring while DC-CS had
some motion artifacts. PRICE is able to provide better reconstructions with less blurred
myocardial borders and papillary muscles.
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Figure 3.4: Evaluation of the ME-MC algorithms by retrospectively downsampling ungated &
free-breathing myocardial perfusion MRI data. The images (a1-a4) correspond to frames in the time
series with different cardiac/respiratory phases and different contrast due to bolus passage. These
images are cropped from a 288×108×80 dataset acquired with 6 coils; one of these images are shown
in (a5). We undersampled the Cartesian sampled data along the phase encoding direction to obtain
a three-fold acceleration. One of the sampling masks are shown in (a6). The reconstructions and
corresponding residuals using PRICE (b1-b4) & (b5-b8), DC-CS (c1-c4)& (c5-c8), MASTeR (d1-
d4)& (d5-d8), k-t SLR (e1-e4)& (e5-e8) and TV (f1-f4)& (f5-f8) are shown. The error images are
scaled by a factor of three for better visualization. The extensive inter-frame motion and contrast
variations due to bolus passage makes this dataset very challenging. We observe that the PRICE
scheme provides reconstructions with lower spatial and temporal blurring, compared to the other
algorithms. The table above shows a quantitative comparison of the entire methods using SER,
HFEN and SSIM metrics computed on the region of interest shown in (a5).
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Figure 3.5: Evaluation of the ME-MC algorithms by radially downsampling 256×256×67
adenosine free-breathing stress myocardial perfusion MRI data acquired from a normal
subject. Three frames of the reference data acquired using 72 spokes/frame are shown in (a1-
a3). This data is undersampled by retaining a subset of 24 spokes; the sampling trajectory
for one of the frames is shown in (a4). The recovered images and their corresponding
residual images using PRICE (b1-b3) & (b4-b6), DC-CS (c1-c3) & (c4-c6), k-t SLR (d1-d3)
& (d4-d6), and TV (e1-e3) & (e4-e6) are shown. The three frames correspond to peak
right ventricular blood enhancement, a transition between the right ventricle and the left
ventricle and peak left ventricular blood enhancement respectively. It is seen from the error
images that the motion compensated methods (PRICE and DC-CS) provide reduced edge
blurring and better preservation of fine features, including papillary muscles and around
the myocardium wall as shown by the red arrows.
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CHAPTER 4
FREE-BREATHING & UNGATED CARDIAC MRI USING

ITERATIVE STORM (I-STORM)

4.1 ABSTRACT

We introduce a local manifold regularization approach to recover dynamic MRI data

from highly undersampled measurements. The proposed scheme relies on the manifold

structure of local image patches at the same spatial location in a free-breathing cardiac

MRI dataset; this approach is a generalization of the SToRM (SmooThness Regularization

on Manifolds) scheme that exploits the global manifold structure of images in the dataset [5].

Since the manifold structure of the patches varies depending on the spatial location and is

often considerably simpler than the global one, this approach significantly reduces the data

demand, facilitating the recovery from shorter scans. Since the navigator-based estimation

of manifold structure pursued in SToRM is not feasible in this setting, a reformulation of

SToRM is introduced. Specifically, the regularization term of the cost function involves

the sum of robust distances between images sub-patches in the dataset. The optimization

algorithm alternates between updating the images and estimating the manifold structure

of the image patches. The utility of the proposed scheme is demonstrated in the context

of in-vivo prospective free-breathing cardiac CINE MRI imaging with multichannel acqui-

sitions as well as simulated phantoms. The new framework facilitates a reduction in scan

time, as compared to the SToRM strategy.

4.2 METHOD

4.2.1 SToRM reconstruction

The SToRM recovery of the dynamic MRI dataset F from its undersampled Fourier

measurements B is posed as [5]:

F∗ = arg min
F
‖A(F)−B‖22 + λ

N∑

i=1

N∑

j=1

wi,j ‖fi − fj‖2 (4.1)

where fi is the ith frame in the dynamic dataset, and hence is the ith column of the Casorati

matrix F and N is the total number of frames in the time series. A navigated acquisition
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strategy was used to estimate the matrix W with entries wi,j , which captures the manifold

structure. The measurement operator at the ith frame is chosen as:

bi =




Φ

Bi




︸ ︷︷ ︸
Ai

fi (4.2)

Here, Ai is multichannel sampling operator for the ith frame. It is the concatenation of the

navigator sampling operator Φ, which is fixed across all frames, and Bi which varies from

frame to frame. The structure of the manifold specified by the weights wi,j , are estimated

from navigators as below:

wi,j = exp−‖Φxi −Φxj‖2
σ2

(4.3)

It was shown that equation (4.1) can also be expressed as:

F∗ = arg min
F
‖A(F)−B‖22 + λ trace

(
FLFH

)
, (4.4)

where:

L = D−W (4.5)

and D is a diagonal matrix with entries di,i =
∑

j wi,j . L is often termed as the graph

Laplacian operator, which can be viewed as the discrete approximation of the Laplace

Beltrami operator on the manifold. The trace of a square matrix is defined as the sum of

the elements on the main diagonal, and FH denotes the conjugate transpose of F.

4.2.2 Calibration-free i-SToRM

We formulate the reconstruction of the images from their highly undersampled mea-

surements as the following unconstrained optimization problem:

F∗ = arg min
F
‖A(F)−B‖22 + λ

N∑

i=1

N∑

j=1

ϕ (‖fi − fj‖)
︸ ︷︷ ︸

C

(4.6)
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F⇤ = arg min
F
kA(F)�Bk22+

�
X

rk

NfX

i=1

NfX

j=1

' (kPrk
(fi � fj)k)

| {z }
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F⇤ = arg min
F
kA(F)�Bk22+

�

NfX

i=1

NfX

j=1

wi,jkfi � fjk2

Figure 4.1: Illustration of the proposed i-SToRM scheme (b), in comparison with the
SToRM scheme in (a). The regularization term in SToRM involves the sum of weighted `2
distances between images in the dataset, where the weights are estimated from navigators.
By contrast, the regularization scheme in i-SToRM is the sum of unweighted robust distances
between image sub-patches in the dataset. Specifically, the patches of size N ×N indicated
by the green neighborhood are compared with each other using the distance metric, which
saturates with large distances. The center of the patches, specified by rk are chosen to span
the entire image with a specified stride; the patches are overlapping in space to reduce blocky
artifacts in the image and suppress noise. The main difference between these formulations is
the distance metric. We use an alternating minimization to solve for the i-SToRM scheme,
which alternates between the estimation of the manifold Laplacian and the images; this
approach eliminates the need for the use of navigators and allows the extension of the
SToRM scheme to exploit the manifold structure of local patches. When the size of the
patches is the same as the size of the images, the first iteration of the i-SToRM scheme is
equivalent to the SToRM setting.

The regularization penalty C involves the sum of unweighted robust distances between

images in the dataset. This is in contrast to equation (4.1) that uses weighted quadratic

distances between frames, which requires the knowledge of the manifold or equivalently the

weights wi,j . We choose the regularization prior ϕ as a saturating distance metric that

penalizes small distances heavily, while it saturates with large distances. In this work, we

use the H1 metric [84], specified by:

ϕ(t) = 1− exp
(
−t2/2σ2

)
(4.7)
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The Taylor series expansion of ϕ(t) shows that ϕ(t) ≈ t2

σ2 +O(t4), which implies that ϕ

can be safely assumed to be a quadratic/Euclidean distance metric for small values of t. Note

that the geodesic distances (distances on the manifold) between neighboring points on the

manifold can be safely approximated by their Euclidean distances. By contrast, Euclidean

distances between points that are distant on the manifold are not good approximations for

the geodesic distance. The use of the saturating prior eliminates such terms from the cost

function. In particular, pairs of frames that have a large inter-frame Euclidean distance do

not contribute to the gradient of the cost function, even though they amount to constant

terms in the regularization prior. The proposed scheme exploits the non-local redundancy

between frames that may be well separated in time. In particular, equation (4.6) facilitates

the implicit sharing of data between similar frames. This implicit approach can be seen

as an alternative to explicitly binning the dynamic data from different respiratory and

cardiac phases, followed by the recovery of the bins [67]. Since the regularization term is

non-convex, we use homotopy continuation strategies to encourage the convergence of the

algorithm to the global minimum. While this approach is not guaranteed to converge to a

global minimum, it is widely used in non-convex compressive sensing and usually results in

good solutions [85].

4.2.3 Relationship to SToRM

Inspired by [84], we use a majorize minimize algorithm to solve equation (4.6). This

majorization strategy has been introduced in [18] and has been widely used in convex and

non-convex image recovery with iterative reweighted algorithms. The non-convex prior

(second term in equation (4.6)) can be majorized as the sum of quadratic distances between

images in the dynamic dataset:

ϕ (‖fi − fj‖) ≤ wi,j ‖fi − fj‖2 (4.8)
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where the new interframe weights are specified by wi,j = ψ (‖fi − fj‖). Here,

ψ(t) =





exp
(
− t2

2σ2

)
if t2 < T

0 else.
(4.9)

Note that the function ψ(0) = 1, while it decays with increasing value of t. The use of

the majorization in equation (4.8) ensures that similar images are averaged together, while

dissimilar images are excluded from the averaging process. This majorization provides a

two-step approach, which alternates between the estimation of the weights from the current

images using equation (4.9) and solving for the images using equation (4.6). Thus, this

approach can be viewed as an iterative version of SToRM, where the weights are estimated

from the current image iterate rather than the k-space navigators as in equation (4.3).

While more efficient optimization strategies such as alternating direction method of

multipliers do exist, the use of these methods along with non-convex priors may suffer from

local minima issues. By contrast, the monotonic convergence offered by the majorize mini-

mize framework, along with efficient continuation strategies, can be combined to encourage

the convergence of the algorithm to the global minimum of equation (4.6).

4.2.4 i-STORM with patches

The formulation in equation (4.6) facilitates the exploitation of the manifold structure

of images in the dataset without explicit navigators. We note that different spatial regions

in the dataset will experience different types of motion. For example, the cardiac regions

are expected to experience cardiac and respiratory motion, while the lung regions far away

from the heart are expected to be independent of cardiac motion. To exploit the spatial

variation in manifold structure, we generalize equation (4.6) to account for the manifold

structure of image sub-patches. Specifically, we formulate the recovery as:

F∗ = arg min
F
‖A(F)−B‖22 + λ

∑

rk

Nf∑

i=1

Nf∑

j=1

ϕ (‖Prk(fi − fj)‖)
︸ ︷︷ ︸

Crk

(4.10)
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Here, Pr(f) is a patch extraction operator, which extracts a square shaped 2-D image patch

centered at the spatial location r from the dynamic dataset f :

Pr(f) = f(r + p),p ∈ K (4.11)

Here, K denotes the square shape neighborhood of size of dimension (N + 1) × (N + 1),

centered at r. The set of spatial locations rk, or equivalently the patches, are chosen to

span the entire image. For example, the set can be chosen as a set of overlapping or non-

overlapping patches. Note that the penalty term C(rk) is essentially the same as the penalty

term C in equation (4.6), restricted the smaller set of images Pr(fi); i = 1, .., N . See Figure

4.1, where the comparisons are restricted to a cube, centered at the spatial location rk. The

motion parameters within different spatial regions/cubes are expected to be very different

in cardiac MRI. This restriction results in a considerably simpler manifold in regions with

no motion or regions with only respiratory motion, which is essentially most of the field of

view (FOV). Thus, the generalization is expected to be a more adaptive version of SToRM.

Note that equation (4.6) is a special case of equation (4.10), when the size of the patch is

the same size of each image, and only one rk is considered. We observe that the SToRM

approach of calibration-based estimation of the manifold structure is not feasible in the

patch-based setting. Specifically, k-space navigators only provide global information about

the whole FOV, which can only be used to estimate the image manifold structure. The

localized manifold structure estimation is facilitated by the reformulation of equation (4.6).

4.2.5 Two step iterative algorithm using MM

We use the majorize minimize (MM) framework to solve for equation (4.10). The non-

convex patch-based prior (second term in equation (4.10)) can be majorized as the sum of

quadratic distances between image sub-patches in the dynamic dataset:

ϕ (‖Prk(fi − fj)‖) ≤ wi,j,rk ‖Prk(fi − fj)‖2 (4.12)
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where the new interframe weights can be self-estimated from the undersampled dataset, as

opposed to the navigators used in SToRM.

Using the majorization in equation (4.10), we obtain an alternating minimization strat-

egy, which alternates between updating the images and the weights/Laplacian operators.

Image update: Once the weights are available, the image can be estimated as:

F∗ = arg min
F
‖A(F)−B‖22 + λ

∑

rk

trace
(
Fk Lk FH

k

)
(4.13)

where Fk is the Casorati matrix:

Fk =

[
Prk(f1), . . . ,Prk(fNf )

]
(4.14)

of the patch time series Prk(fi), i = 1, .., Nf . We can think of Fk = Qk(F), where Qk is an

operator that extracts the cube of data centered at the spatial location rk and constructs

a Casorati matrix out of it. The matrices Lk = Dk −Wk are the Laplacians of the patch

time series Fk. We observe that equation (4.13) is the extension of equation (4.4) to the

patch setting.

The Euler-Lagrange equation for the above quadratic equation is given by:

A∗A (F) + 2 λ
∑

rk

Q∗k


Qk(F)︸ ︷︷ ︸

Fk

Lk


 = A∗ B (4.15)

Here, A∗ denotes the adjoint of the operator A. The second term on the l.h.s involves

the extraction of the Casorati matrix F, multiplication by Lk, followed by putting the

entries of the Casorati matrix back at the appropriate location. The optimization problem

equation (4.15) can be efficiently solved using conjugate gradients.

Weight update: The Laplacian matrices, or equivalently the weights, are estimated from

the current image series F as:

(Wk)i,j = ψ (‖Prk(fi − fj)‖) (4.16)
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where ψ is specified by equation (4.9). Note that the inter-patch distance metric in equa-

tion (4.7) was chosen to heavily penalize small differences between the patches, while the

metric saturates for large sub-patch differences. The patch operator extracts a cube of data

in the temporal direction and constructs a Casorati matrix, equation equation (4.14). The

saturating distance metric ensures that the penalty for highly dissimilar patch pairs are

considerably smaller than what it would be if `1 or `2 priors are used. In SToRM, the

neighborhood of each frame was set to be a fixed number of nearest neighbors, the elements

of W in equation (4.5), where the weights are estimated from spatially fixed navigators.

Unlike SToRM, where the weight matrix was sparsified to retain only 3 nearest neighbors

for each frame, the weight matrix in the new framework, is thresholded in order to prevents

over-smoothing of the recovered images. Note that this approach is consistent with the

assumed metric equation (4.7).

Algorithm 4.2.1: i-SToRM(A,B)

Input : B = k-space measurements

Finit = B;

while i < # Outer Iterations

do





Update F by solving equation (4.15) using CG;

Update weight matrices Wk using equation (4.16);

Derive the Laplacians Lk from Wk using equation (4.5);

return (F)

4.2.6 Datasets and sampling pattern

We validate the new algorithm using a human phantom, used to simulate free-breathing

cardiac imaging experiments with variable heartbeat periods [86]. The data has been created

by realistically image warping a breath held cine dataset, not necessarily having regular

breathing patterns. It has a reasonable amount of inter-frame motion due to respiratory

dynamics and its a good fit to apply quantitative metrics and compare the proposed scheme

with state-of-the-art methods. The dataset has 200 phase encodings, 256 samples per

readout and 256 temporal frames.
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We also validate the proposed algorithm using experiments on two in-vivo free-breathing

and ungated cardiac CINE datasets with radial undersampling settings. They were acquired

using protocols approved by the Institutional Review Board (IRB) at the University of Iowa.

The prospectively undersampled MR imaging was acquired using radial FLASH sequence

on a Siemens Skyra 3T scanner with 24 coil elements total (body and spine coil arrays).

The datasets were acquired from congenital heart patients, who were instructed to breathe

freely in all of the studies. The images were acquired in short axis and 4-chamber view to

test the sensitivity of the algorithm to geometry. The short axis data was acquired using

the calibration-based scheme in [5] as well as a golden angle acquisition scheme. By using

the equiangular spacing within each frame, we ensure that the entire k-space is covered

uniformly.

The sequence parameters were: TR/TE 4.68/2.1 ms, FOV 300mm, base resolution 256,

slice thickness = 5 mm, phase encodes × frequency encodes: 512 × 512. A temporal

resolution of 46.8 ms was achieved by sampling 10 lines of k-space per frame. 1000 radial

lines of k-space were acquired per slice which resulted in an acquisition time of around

46.8 s. The scan parameters were kept the same across all views for the entire prospective

datasets.

4.2.7 Metrics used for quantitative comparison

The retrospective reconstructions were quantitatively compared to the reference data

using SER, HFEN and SSIM metrics, described in the earlier chapter. We also use Global

Phase Coherence, GPC, for both retrospective and prospective experiments. We evaluated

these metrics in both the entire images and a square region of interest containing the heart.

GPC index is used to measure image sharpness by defining the Fourier phase spectrum

of an image and estimating the volume of all possible phase functions associated with

the measured modulus. The likelihood is measured with the total variation (Rudin-Osher-

Fatemi implicit prior), and the numerical estimation is realized by a Monte-Carlo simulation:

GPC(u) = − log10 Φ

(
µ−TV(u)

σ

)
, (4.17)
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where µ and σ are the mean and variance of the samples (TV(ui))1≤i≤N , N is the total num-

ber of images and Φ is the tail of the Normal Distribution, that is Φ(x) = (2π)−(1/2)
∫ +∞
x e−t

2/2dt.

GPC index decreases with blur, noise, and ringing, and thus provides a new interesting

sharpness indicator, that can be used for parametric blind deconvolution and prospective

studies when ground truth is not available. We used the toolbox introduced by Blanchet et

al [87].

4.2.8 Implementation

The algorithms were implemented using a single node of a high-performance Argon

Cluster at the University of Iowa, equipped with Intel Xeon CPU with 28 Cores at 2.40GHz

with 128 GB of memory running on Red Hat Linux MATLAB R2016b.

The prospective datasets were acquired using 10,000 radial spokes, which corresponded

to an acquisition time of around 50 seconds per slice. We binned the data to 10 spokes/frame,

which translates to 1000 frames. Our earlier SToRM scheme needed 1000 frames to obtain

good reconstructions. By contrast, we only rely on the first 300 time frames in this work.

The raw k-space of the radially acquired datasets are interpolated into a Cartesian grid

before processing to avoid the use of non-uniform Fourier transform computations within

the reconstruction algorithms. Our previous experiments [44] show that the loss in image

quality resulting from this approximation is minimal. We reconstructed low temporal reso-

lution images for the original coils by binning k-space data from a large number of frames.

Since more than half of the coil images were contaminated with noise, we threw away the

noisy ones and we kept the best 10 coils. The data from the selected coils was coil-combined

using SVD to form 5-6 virtual coils with most significant singular vectors. The coil sensi-

tivity maps were estimated from this compressed data using the method designed by Walsh

et al [88] and assumed to be constant over time. Not only excluding the noisy coils helped

get better results for the entire schemes, but also reduced the computational complexity of

the reconstruction procedure and made the memory demand of the SENSE-based method

manageable.

Since the prospective datasets used in this work have no ground truth available, the
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quantitative metrics, except for GPC, can’t be used for these experiments. To allow for

a systematic comparison, one standardized way of choosing the model parameters is to

rely on the data consistency term. Since all of these methods share a quadratic data fit

term ‖A(F)−B‖22, the model regularization parameter for each method was chosen so that

the different methods produce matching data fit terms (to within a small tolerance). In

i-SToRM experiments, the optimal parameters determined for one dataset work well for

other datasets acquired in the same setting. The filter size parameter σ was initialized

by 10−4 and was decreased by a factor of 10−1 in each outer iteration. This continuation

strategy helped provide fast convergence and minimize the oversmoothing resulted from

averaging multiple neighbors. Our results show that 3-4 iterations are sufficient to get the

best recovery. Adding more iterations did not further improve the weight matrix, and hence

the reconstruction. We set the patch sizes in the proposed scheme to 12 × 12 with a step

size of 4 to ensure the patches are overlapped for better recovery. Smaller neighborhood

and step sizes did not significantly improve the performance, while they resulted in slower

reconstructions. Our experiments show that the above choice provided the best tradeoff

between the computational complexity and the quality of reconstructions. The algorithm

is terminated when the relative change in the cost function falls below small value ε; we

have set ε to 10−6 in our scheme. The thresholding parameter T in (4.9) and regularization

factor λ in both (4.6,4.10) were set to 10−2 and 10−6 respectively. We have kept the default

value of PSF subspace dimension to 32.

4.3 RESULTS

We compare our results with prior SToRM and low-rank based partially separable func-

tions, PSF, method [86]. PSF exploits the linear dependencies between the intensity profiles

by modeling them as a linear combination of basis functions, which are estimated from nav-

igator signals. For the PSF method, we use the Frobenius norm of the basis images as

a regularizer, which is similar to [86]. We also compare the proposed scheme with com-

pressed sensing temporal Total Variation plus Wavelet method using Berkeley Advanced

Reconstruction Toolbox (BART) [89].
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In Figure 4.2 we compare the proposed patch-based i-SToRM with both i-SToRM with-

out patches and classical Total Variation with Wavelet regularization methods. The navi-

gator spokes were not used for estimating the manifold structure in both i-SToRM schemes.

The i-SToRM with patches scheme exploits the local manifold structure, while i-SToRM

without patches exploits the global image manifold structure, similar to SToRM. We also

compare the results against SToRM and PSF, both of which rely on navigators to estimate

the manifold structure and subspace, respectively. Row 2 corresponds to the proposed

scheme, which is i-SToRM with patches (b1-b3). The i-SToRM without patches is shown

in row 3 (c1-c3), and TV + WV in row 4 (d1-d3). The SToRM and PSF schemes that

rely on navigators are shown in rows 5-7, (e1-e3) (f1-f3) and (g1-g3). Rows 2-6 correspond

to reconstructions from 300 frames (≈ 14 seconds of acquisition), while the bottom row

corresponds to SToRM reconstruction from 1000 frames (≈ 50 seconds of acquisition). The

images are zoomed versions around the square box shown in (a3) while (a2) is the initial

guess. The time profiles in the last column are drawn for the entire reconstructed frames

along the line passing through the cardiac region shown in (b1). The chosen frames are

depicted in the time profiles with their respective colors. Three frames of different phases

are shown for each recon case. The sampling trajectory for one of the sampling patterns is

shown in (a1), with colored lines indicating the fixed navigators. We will suffice to compare

the proposed patch-based i-SToRM version for the rest of the datasets. In the last column,

the GPC indices computed for the entire time series are reported. The top value was calcu-

lated for the global images while the one shown in the bottom was computed around a small

region of interest containing the heart. The quantitative metric shows the reconstruction

of the proposed method using 300 frames are comparable to that 1000 dataset recovered

using SToRM.

In Figure 4.3 we show the reconstruction from a calibration-based acquisition in rows

2-5, while row 6 corresponds to a golden angle acquisition. Rows 2 and 6 were recovered

using patch-based i-SToRM. The calibrated-free dataset is recovered using the proposed

scheme and TV + WV since both SToRM and PSF cannot estimate the manifold structure

without navigators. The sampling trajectories for navigated and golden-angle schemes for
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one of the frames are shown in (a1) and (a2). Only a subset of 300 frames was used for all

the reconstructions. This example shows that the i-SToRM with patches can facilitate the

recovery of the data without navigators and can shorten the scan time compared to SToRM,

with less significant artifacts exhibited in PSF and TV + WV schemes. Note that the above

two datasets studied in this research are quite challenging, considering the ungated setting,

the high undersampling factor, as well as the large respiratory motion due to free-breathing

mode. The last column shows the GPC indices for both the entire images, the top value, as

well as around a small region of interest containing the myocardium shown in the bottom.

The quantitative metric shows an improvement of the proposed method compared to other

reconstructions. In the last column, the GPC indices computed for the entire time series

are reported. The top value was calculated for the global images while the one shown

in the bottom was computed around the myocardium. The quantitative metric shows an

improvement of the proposed method compared to other reconstructions.

Figure 4.4 shows the recovery of the simulated CINE dataset using navigators-free

schemes i-SToRM with patches and TV + Wavelet, and navigator-based schemes SToRM

and PSF. The simulated dynamic dataset is retrospectively undersampled using radial sam-

pling pattern with 12 spokes, 4 navigator lines and 8 golden angle spokes per frame. One

of the sampling masks is shown in (a6) with colored lines indicating the navigators. Three

frames of each recon of the data corresponding to peak diastolic and systolic cardiac phases

and one in transition phase are shown for each scheme. The images are cropped versions

of the full frame shown in (a5) while (a4) is the initial guess. The reconstructed images are

shown in the first three columns along with their error images scaled by a factor of 5 for

better visualization. The time profiles in the last column are drawn for the entire recovered

frames, along with the line passing through the left ventricle and right ventricle shown in

(a5). The tables at the bottom of the figure show a quantitative comparison of the entire

methods using SER, HFEN, SSIM and GPC metrics computed on the entire times series

on both global images as well as a square region of interest containing the heart as shown

in (f1).
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4.4 DISCUSSION AND CONCLUSION

We introduced a novel regularization approach to exploit the manifold structure of lo-

cal image patches to recover dynamic MRI data from highly undersampled measurements.

The proposed scheme is a generalization of the SToRM scheme, which exploits the global

manifold structure of images in the dataset. Since the manifold structure of the patches

are simpler and vary depending on the spatial location, this approach reduces the data

demand, facilitating the recovery from shorter scans. Since the direct extension of SToRM

to the patch setting is not possible, we relied on a regularization term that involves the

sum of robust distances between images sub-patches in the dataset. We used an alternating

minimization scheme that alternates between the estimation of the manifold Laplacian and

the recovery of the patches; this approach generalizes SToRM and eliminates the need for

navigators to estimate the Laplacian. The utility of the proposed scheme is demonstrated

in the context of in-vivo prospective free-breathing cardiac CINE MRI imaging with mul-

tichannel acquisitions. The new framework facilitates the reduction in the scan time by a

factor of three, compared to the SToRM strategy.

In Figure 4.2, we observe that the i-SToRM with patches is almost comparable in per-

formance to SToRM, which shows that the Laplacian can be estimated without the use of

explicit navigators, which also facilitates the extension of SToRM to the patch setting. The

main difference of i-SToRM scheme with SToRM is the way in which the manifold Laplacian

is estimated. We observe a significant reduction in alias artifacts in i-SToRM with patches,

resulting from the exploitation of the local manifold structure, compared to i-SToRM with-

out patches. We observe that the performance of both PSF and TV + Wavelet schemes is

worse than the SToRM scheme, especially in terms of the temporal profile and the noise

amplification. This can be explained by the improved modeling of data by the non-linear

manifold model, as opposed to the subspace model used in PSF or combination of sparse

TV and Wavelet. As expected the SToRM with 300 frames result in increased noise, com-

pared to the SToRM reconstructions shown in the bottom row, where the reconstruction

relied on 1000 frames (≈ 50 seconds of acquisition). By contrast, the patch-based i-SToRM

shown in the second row is comparable in performance to the SToRM reconstructions with



www.manaraa.com

72

1000 frames shown in the bottom row. Since SToRM and i-SToRM without patches rely

on the similarity between images in the dataset, a large number of images are needed to

ensure that all the phases are well represented. Hence, these methods require relatively long

acquisition duration to ensure that the image manifold is well-sampled. By contrast, local

patch manifolds are relatively simpler; fewer images (and hence shorter acquisitions) are

sufficient to ensure good sampling of the corresponding patch manifolds. This translates

to improved performance over TV + Wavelet and PSF. Also, we observe i-SToRM without

patches results in lower quality, indicating the need for local manifold modeling, especially

when the Laplacian is estimated from the images themselves. We considered the entire

dataset recovery using SToRM prior in the bottom row for the sake of comparison.

The results in Figure 4.3 show the ability of the proposed i-SToRM scheme in recovering

quality images comparable to SToRM without relying on navigator signals. Comparing the

time profiles of the i-SToRM scheme between the navigated and non-navigated setting, we

observe that the time profiles are smoother in the calibration-free dataset. This can be

explained by the improved incoherence of sampling offered by the golden angle sequence.

Note that the navigated sequence resulted in a 40% loss in efficiency due to the need for

navigators. We can also see both TV + Wavelet and PSF exhibit considerable temporal

motion artifacts or blurring. While i-SToRM is compared against SToRM and PSF us-

ing the calibration-based datatset, the calibrated-free dataset is recovered using only the

proposed scheme as well as TV + Wavelet since both SToRM & PSF cannot estimate the

manifold structure without navigators.

In Figure 4.4, we observe that i-SToRM provides reconstructions with lower spatial and

temporal blurring, compared to other algorithms. While SToRM recon is quite comparable

to the proposed scheme, PSF and TV + Wavelet reconstructions exhibit motion artifacts

and temporal blurring respectively. The residual images show that the errors associated

with i-SToRM and SToRM are more homogeneously distributed in the entire image, thus

provide reduced edge blurring and better preservation of fine features, including papillary

muscles. By contrast, the errors with TV+ Wavelet and PSF are more concentrated in

the edge regions and around the myocardial wall, indicating edge blurring. The quantita-
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tive comparisons of the algorithms on this setting are shown in the bottom tables where

we quantified the reconstruction by the signal-to-error ratio (SER), High Frequency Error

(HFEN), Structural SIMilarity index (SSIM) and Global Phase Coherence (GPC) metrics

computed on the entire images as well as a square region of interest containing the heart

as shown in (f1). The quantitative metrics show about 1- 4 dB SER improvement using

i-SToRM compared to other reconstructions. The improvement behavior is consistent using

HFEN, SSIM and GPC quantitative metrics.

Our results demonstrate that using the local manifold structure of image patches is

superior to global manifold recovery. This approach is related to PRICE prior introduced

in the earlier chapter 3. The main difference is the neighborhood to which each patch

is compared. Specifically, PRICE compares each patch with its immediate neighbors, fa-

cilitating implicit motion compensated reconstruction. Since this comparison has to be

repeated for all the patches in the 3-D dataset, the computational complexity of the exten-

sion of PRICE scheme to this setting is challenging; it had been previously demonstrated

on breath-held CINE and myocardial perfusion MRI applications, where the undersampling

factor was considerably lower, when recovery from fewer image frames was sufficient. The

number of inter-patch comparisons in the proposed scheme is lower by an order of magni-

tude. Specifically, we only compare each patch with patches in all the frames at the same

location, which keeps the computational complexity manageable. The proposed implicit

motion resolved reconstruction can be viewed as an alternative to binning strategies, which

exploits the repetitive respiratory and cardiac motion. The benefit of the proposed scheme

is that it does not require sophisticated approaches to estimate the motion phases, and is

applicable to non-periodic motion applications such as speech and imaging of the digestive

tract, where phase information is difficult to obtain; see [5] for examples of an application

of SToRM framework to speech imaging.

The utility of the proposed scheme is demonstrated in the context of simulated human

phantoms as well as prospective free-breathing and ungated cardiac CINE MRI imaging

with multichannel acquisitions. Future efforts will be directed towards an extension of the

proposed scheme to a 3D multi-slice multi-channel acquisition.
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Figure 4.2: Comparison of SToRM, PSF, TV +Wavelet, i-SToRM without patches, and i-SToRM
with patches: We study the performance of these methods on a free-breathing ungated cardiac
CINE setting, acquired in the axial 4-chamber view. The dataset was acquired using the navigated
acquisition scheme used in [5], which consists of 4 navigator lines and 6 golden angle spokes per
frame. The sampling trajectory for one of the sampling patterns is shown in sub-figure (a1) with
colored lines indicating the navigators that are the same for all frames. The time profiles in the
fourth column are drawn for all of the recovered frames, along with the line passing through the
cardiac region shown in (b1). The time instance of the specific frames are depicted in the time profiles
with the color of their bounding boxes. Three frames of each recon dataset are shown. The images
are zoomed versions around the square box shown in (a3) while (a2) is the initial guess. Subfigures
(b1-b3), (c1-c3) and (d1-d3) show the recovery using navigators-free schemes, patch-based i-SToRM,
i-SToRM with patches and TV + Wavelet respectively; while (e1-e3) and (f1-f2) show the recovery
using navigators-based schemes SToRM and PSF. The top five rows are recovered using only a
subset of 300 frames, while the bottom row shows the data recovered from 1000 frames. SToRM
and PSF schemes, shown in the 5th - 7th rows, relied on navigators to estimate the global manifold
Laplacian. The comparisons of the reconstructions from 300 frames show that the i-SToRM scheme
can provide comparable image quality to the SToRM scheme, even though it did not rely on the
navigators. This iterative approach enabled us to exploit the local manifold structure of the patches
(i-SToRM with patches), which significantly improved the performance over the global approach.
The improved performance of SToRM and iSToRM over PSF and TV +Wavelet methods, seen
by a reduced blurring of image features and improved temporal profiles, can be attributed to the
improved signal modeling offered by the non-linear manifold model compared to a subspace approach
or sparsity regularization. Note that the image quality of the i-SToRM with patches obtained from
300 frames is comparable to that obtained from SToRM with 1000 frames. In the last column,
we report the GPC indices for both the entire images, the top value, as well as around a small
region of interest containing the heart shown in the bottom. The quantitative metric shows that
the reconstruction of the proposed method using 300 frames are comparable to that 1000 dataset
recovered using SToRM.
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Figure 4.3: Evaluation of the proposed i-SToRM scheme with patches on free-breathing and
ungated dataset with short axis views. The dataset was collected with two acquisition schemes:
a navigated acquisition scheme, as well as a golden angle sequence. The sampling trajectories for
navigated and golden-angle schemes for one of the frames are shown in (a1) and (a2), respectively
where the colored lines indicating the fixed navigators that are the same for all frames. 300 frames
of the time series (3000 spokes, which correspond to 14 seconds of acquisition) were considered for
recovery. Subfigures (b1-b3) and (c1-c3) show the recovery using navigators-free i-SToRM without
patches and TV + Wavelet while (d1-d3) and (e1-e3) show the recovery using navigators-based
schemes SToRM and PSF respectively. The bottom two rows show the calibration-free dataset
recovered using the proposed i-SToRM method with patches (f1-f3) and TV + Wavelet (g1-g3). Note
that there is no one-to-one correspondence between the two acquisitions since they were acquired
at two different time points, possibly with different respiratory patterns. (a3) is the initial guess,
while (a4) is the corresponding frame recovered using patch-based i-SToRM. The zoomed versions
of three frames, out of 300 frames, from different phases in the dataset are shown for the entire
cases. The time profiles in the fourth column are drawn for all of the frames, along the line passing
through the left ventricle and right ventricle as shown in (b1). While i-SToRM is compared against
SToRM and PSF using the calibration-based dataset, the calibrated-free dataset is recovered using
only the proposed scheme as well as TV + Wavelet since both SToRM & PSF cannot estimate
the manifold structure without navigators. The results show the ability of the proposed i-SToRM
scheme in recovering quality images comparable to SToRM without relying on navigator signals.
Both TV + Wavelet and PSF exhibit considerable motion artifacts and temporal blurring. The last
column shows the GPC indices for both the entire images, the top value, as well as around a small
region of interest containing the myocardium shown in the bottom. The quantitative metric shows
an improvement of the proposed method compared to other reconstructions.
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Figure 4.4: Recovery of the simulated CINE dataset using i-SToRM with patches (b1-b3), both
calibration-based schemes SToRM (c1-c3) and PSF (d1-d3), and classical total variation with wavelet
regularization (e1-e3). The simulated dynamic dataset is retrospectively undersampled using radial
sampling pattern with 12 spokes, 4 navigator lines and 8 golden angle spokes per frame. One of the
sampling masks is shown in (a6) with colored lines indicating the navigators. Three frames of each
recon of the data corresponding to peak diastolic and systolic cardiac phases and one in transition
phase are shown for each scheme. The images are cropped versions of the full frame shown in
(a5) while (a4) is the initial guess. The reconstructed images are shown in the first three columns
along with their error images scaled by a factor of 5 for better visualization. The time profiles in
the last column are drawn for the entire recovered frames, along with the line passing through the
left ventricle and right ventricle shown in (a5). We observe that i-SToRM provides reconstructions
with lower spatial and temporal blurring, compared to other algorithms. While SToRM recon is
quite comparable to the proposed scheme, PSF and TV + Wavelet reconstructions exhibit motion
artifacts and temporal blurring respectively. The residual images show that the errors associated
with i-SToRM and SToRM are more homogeneously distributed in the entire image, thus provide
reduced edge blurring and better preservation of fine features, including papillary muscles. By
contrast, the errors with TV + Wavelet and PSF are more concentrated in the edge regions and
around the myocardial wall, indicating edge blurring. The tables at the bottom of the figure show a
quantitative comparison of the entire methods using SER, HFEN, SSIM and GPC metrics computed
for the entire times series on both global images as well as a square region of interest containing the
heart as shown in (f1).
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CHAPTER 5
SUMMARY & FUTURE DIRECTIONS

5.1 SUMMARY

In this thesis, we apply iterative algorithms of patch-smoothness regularization in med-

ical imaging applications. These approaches are enabled by the reformulation of current

non-local regularization schemes as an alternating algorithm to minimize a global criterion.

We divide our research into three main chapters.

In Chapter 2, we developed a fast and novel iterative shrinkage algorithm for patch-

smoothness regularization to recover static 2D MR imaging from undersampled and noisy

measurements. This approach is enabled by the reformulation of current non-local regular-

ization schemes as an alternating algorithm to minimize a global criterion. The proposed

algorithm alternates between evaluating the denoised inter-patch differences by shrinkage

and computing an image that is consistent with the denoised inter-patch differences and

measured data. We derived analytical shrinkage rules for several penalties that are relevant

to non-local regularization. The resulting algorithm is observed to be considerably faster

than current alternating non-local algorithms. The proposed scheme is applicable to a large

class of inverse problems including deblurring, denoising, and Fourier inversion. The com-

parisons of the proposed scheme with state-of-the-art regularization schemes in the context

of recovering images from undersampled Fourier measurements demonstrate a considerable

reduction in alias artifacts and preservation of edges.

In Chapter 3, we introduced an efficient patch smoothness regularization, we term it

PRICE, which is a generalized version of the above 2D algorithm. PRICE, which implic-

itly compensates for interframe motion, is designed to recover dynamic MRI data from

highly undersampled measurements. The regularization prior is a sum of distances between

each rectangular patch in the dataset with other patches in the dataset using a saturat-

ing distance metric. Unlike current motion estimation and motion compensation (ME-MC)

methods, the proposed scheme does not require reference frames or complex motion models.

The proposed algorithm, which alternates between inter-patch shrinkage step and conjugate

gradient algorithm, is considerably more computationally efficient than ME-MC counter-
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parts. The reconstructions obtained using the proposed algorithm is compared against

state-of-the-art methods applied to CINE and contrast changing perfusion datasets.

In Chapter 4, we introduced an implicit motion resolved reconstruction algorithm for

real-time dynamic imaging, which didn’t require specially designed sequences with naviga-

tors. We posed the image reconstruction as a regularized optimization problem, where the

regularization term involves the sum of robust distances between image sub-patches in the

dataset. Specifically, we used saturating distance functions that are insensitive to large im-

age differences. A key benefit of this scheme is its ability to work with the golden angle and

tiny golden angle radial sequences that are currently implemented on several scanners. The

elimination of the navigators would translate to improved temporal resolution or improved

image quality in practical applications.

5.2 FUTURE DIRECTIONS

Even though our research focused on cardiac and myocardial perfusion imaging, the

proposed PRICE and iSTORM frameworks can be readily applied to a range of dynamic

imaging problems (e.g imaging of vocal tract, liver imaging), where phase information is

difficult to obtain. We will apply the designed schemes into those MR applications.

Our future endeavors will also be directed towards proposing a self-learning framework

that can simultaneously estimate the manifold structure of the dynamic dataset and the

signals contained on the manifold from highly under-sampled measurements. As mentioned

in the previous chapters, PRICE and i-SToRM priors are quite complementary and can be

combined for improved performance. Since PRICE is not suited for a large-scale dataset,

our next research will be focused on even speeding up the performance of both frameworks

by optimizing the schemes or using factorization for i-Storm. By combining PRICE and

i-SToRM, the formulation of the motion compensation/resolution recovery as a single cost

function will enable us to come up with an effective optimization algorithm that is more

computationally efficient than current state-of-the-art methods. While the patch regular-

ization term compensates for the motion, the motion-resolved term picks the respiratory

phases that match each other, which are close on the manifold but may not be that close
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on the real sequence. The redundancies between adjacent frames in the presence of motion

can be exploited using patch smoothness regularization; while the redundancies between

frames in the same cardiac and respiratory phases can be exploited using image manifold

smoothness regularization, thus both provide implicit motion-compensated and implicit

motion-resolved recovery.

We believe that using motion-compensated and motion-resolved blending will lower the

spatiotemporal artifacts and thus provide a better and more accurate motion detection and

image recovery. A combination of motion-compensated and motion-resolved priors have

not been studied so far to the best of our knowledge. These implicit strategies with well-

defined energy minimization formulations are more effective and computationally efficient

than explicit motion compensation and other gating methods. The proposed manifold prior

can extend the gains of motion-resolved and motion-compensated recovery to free-breathing

applications with contrast variations, in addition to enabling the exploitation of redundancy

between acquisitions with different contrasts. We will validate the proposed framework on

free-breathing cardiac CINE imaging and myocardial perfusion datasets. This framework

can also be easily extended to include other sequences (e.g. T2 mapping, stress perfusion),

as well as non-cardiac applications (vocal tract imaging, liver imaging, and lung imaging).

We will try to demonstrate the utility of the proposed schemes in the context of spiral

acquired data in addition to the current golden angle radial sequences.
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